Тормоза

Хранение и эксплуатация Ni-MH аккумуляторов. Никель-металл-гидридный аккумулятор Напряжение зарядки ni mh аккумуляторов

Из опыта эксплуатации

NiMH элементы широко рекламируются, как элементы с высокой энергоемкостью, не боящиеся холода и не имеющие памяти. Купив цифровую фотокамеру Canon PowerShot A 610 , я естественно снабдил ее емкой памятью на 500 снимков высшего качества, а для увеличения продолжительности съемок купил 4 NiMH элемента емкостью 2500 ма* час фирмы Duracell .

Сравним характеристики выпускаемых промышленностью элементов:

Параметры

Ионно-литиевые
Li-ion

Никель-кадмиевые NiCd

Никель-
металл-гидридные NiMH

Свинцово-кислотные
Pb

Длительность службы, циклов зарядки/разрядки

1-1,5 года

500-1000

3 00-5000

Энергетическая емкость, Вт*ч/кг
Ток разряда, мA*емкость аккумулятора
Напряжение одного элемента, В
Скорость саморазряда

2-5% в месяц

10% за первые сутки,
10% за каждый последующий месяц

в 2 раз выше
NiCd

40% в год

Диапазон допустимых температур, градусы Цельсия зарядки
разрядки -20... +65
Диапазон допустимых напряжений, В

2,5-4,3 (коксовые) , 3,0-4,3 (графитовые)

5,25-6,85 (для батарей 6 В),

10,5-13,7 (для батарей 12 В)

Таблица 1.

Из таблицы видим NiMH элементы обладают высокой энергетической емкостью, что делает их предпочтительными при выборе.

Для ихзарядки было куплено интеллектуальное зарядное устройство DESAY Full-Power Harger обеспечивающее зарядку NiMH элементов с их тренировкой. Элементы оно заряжались качественно, но... Однако на шестой зарядке оно приказало долго жить. Выгорела электроника.

После замены зарядного устройства и нескольких циклов заряд-разряд, аккумуляторы стали садиться на втором - третьем десятке снимков.

Оказалось, что не смотря на заверения, NiMH элементы тоже обладают памятью.

А большинство современных портативных устройств их использующих, имеют встроенную защиту, отключающую питание при достижении некоторого минимального напряжения. Это не позволяет выполнить полную разрядку аккумулятора. Тут и начинает играть свою роль память элементов. Не полностью разряженные элементы получают неполный заряд и их емкость падает с каждой перезарядкой.

Качественные зарядные устройства позволяют выполнять зарядку без потери емкости. Но что-то я не смог найти в продаже такого для элементов емкостью 2500маh . Остается периодически проводить их тренировку.

Тренировка NiMH элементов

Все написанное ниже не относится к элементам аккумуляторной батареи имеющим сильный саморазряд . Их можно только выбросить, опыт показывает, тренировке они не поддаются.

Тренировка NiMH элементов заключается в нескольких (1-3) циклах разрядки - зарядки.

Разрядка выполняется до снижения напряжения на аккумуляторном элементе до 1В. Желательно разряжать элементы индивидуально. Причина в том, что способность принимать заряд может быть различна. И она усиливается при зарядке без тренировки. Поэтому происходит к преждевременное срабатывание защиты по напряжению вашего устройства (плеера, фотоаппарата, ...) и последующей зарядке неразряженного элемента. Результат этого нарастающая потеря емкости.

Разрядку необходимо выполнять в специальном устройстве (Рис.3), которое позволяет выполнять ее индивидуально для каждого элемента. Если нет контроля напряжения, то разрядка выполнялась до заметного снижения яркости лампочки.

А если Вы засечете время горения лампочки вы сможете определить емкость аккумулятора, она вычисляется по формуле:

Емкость = Ток разрядки х Время разрядки = I х t (А * час)

Аккумулятор емкостью 2500 ма час способен отдавать в нагрузку ток 0,75 А в течении 3,3 часа, если полученное в результате разрядки время меньше, соответственно и меньше остаточная емкость. И при уменьшении емкости Вам необходимой надо продолжить тренировку аккумулятора.

Сейчас для разрядки элементов аккумуляторов я применяю устройство изготовленное по схеме показанной на рис.3.

Оно изготовлено из старого зарядного устройства и выглядит так:

Только теперь лампочек 4 штуки, как в рис.3. О лампочках надо сказать отдельно. Если лампочка имеет ток разрядки равный номинальному для данного аккумулятора или несколько меньший ее можно использовать как нагрузку и индикатор, иначе лампочка только индикатор. Тогда резистор должен иметь такую величину, чтобы суммарное сопротивление El 1-4 и параллельного ей резистора R 1-4 было порядка 1,6 Ом.Замена лампочки на светодиод недопустима.

Пример лампочки которая может быть использована в качестве нагрузки - это криптоновая лампочка для карманного фонаря на 2,4 В.

Особый случай.

Внимание! Производители не гарантируют нормальную работу аккумуляторов при зарядных токах превышающих ток ускоренной зарядки I зар должен быть меньше емкости аккумулятора. Так для аккумуляторов емкостью 2500ма*час он должен быть ниже 2,5А.

Бывает, что NiMH элементы после разрядки имеют напряжение менее 1,1 В. В этом случае необходимо применить прием описанный в приведенной выше статье в журнале МИР ПК. Элемент или последовательная группа элементов подключается к источнику питания через автомобильную лампочку 21 Вт.

Еще раз обращаю Ваше внимание! У таких элементов обязательно надо проверить саморазряд! В большинстве случаев именно элементы с пониженным напряжением имеют повышенный саморазряд. Эти элементы проще выкинуть.

Зарядка предпочтительна индивидуальная для каждого элемента.

Для двух элементов напряжением 1,2 В зарядное напряжение не должно превышать 5-6В. При форсированной зарядке лампочка одновременно является индикатором. При снижении яркости лампочки можно проверить напряжение на NiMH элементе. Оно будет больше 1,1 В. Обычно, эта начальная, форсированная зарядка занимает от 1 до 10 минут.

Если NiMH элемент, при форсированной зарядке в течении нескольких минут не увеличивает напряжение, греется - это повод снять его с зарядки и отбраковать.

Рекомендую применять зарядные устройства только с возможностью тренировки (регенерации) элементов при перезарядке. Если нет таких, то через 5-6 рабочих циклов в аппаратуре, не дожидаясь полной потери емкости, производить их тренировку и отбраковывать элементы имеющие сильный саморазряд.

И они Вас не подведут.

В одном из форумов прокомментировали эту статью " написано тупо, но больше ничего нет ". Так Вот это не"тупо", а просто и доступно для выполнения на кухне каждому кто нуждается в помощи. Т.е. максимально просто. Продвинутые могут поставить контроллер, подключить компьютер, ...... , но это уже другая история.

Чтобы не казалось тупо

Существуют "умные" зарядники для NiMH элементов.

Такой зарядник работает с каждым аккумулятор отдельно.

Он умеет:

  1. индивидуально работать с каждым аккумулятором в разных режимах,
  2. заряжать аккумуляторы в быстром и медленном режиме,
  3. индивидуальный ЖК дисплей для каздого аккумуляторного отсека,
  4. независимо заряжать каждый из аккумуляторов,
  5. заряжать от одного до четырех аккумуляторов разной емкости и типоразмера (АА или ААА),
  6. защищать аккумулятор от перегрева,
  7. защищать каждый аккумулятор от перезарядки,
  8. определение окончание зарядки по падению напряжения,
  9. определять неисправные аккумуляторы,
  10. предварительно разряжать аккумулятор до остаточного напряжения,
  11. восстанавливать старые аккумуляторы (тренировка заряд-разряд),
  12. проверять емкость аккумуляторов,
  13. отображать на ЖК дисплее: - ток заряда, напряжение, отражать текущую емкость.

Самое главное, ПОДЧЕРКИВАЮ , данного типа устройства позволяют работать индивидуально с каждым аккумулятором.

По отзывам пользователей такое зарядное устройство позволяет восстановить большинство запущенных аккумуляторов, а исправные эксплуатировать весь гарантированный срок эксплуатации.

К сожалению я таким зарядником не пользовался, поскольку в провинции его купить просто невозможно, но в форумах Вы можете найти много отзывов.

Главное не заряжайте на больших токах, не смотря на заявленный режим с токами 0,7 - 1А, это все же малогабаритное устройство и может рассеять мощность 2-5 Вт.

Заключение

Любое восстановление NiMh аккумуляторов строго индивидуальная (с каждым отдельным элементом) работа. С постоянным контролем и отбраковкой элементов не принимающих зарядку.

И лучше всего заниматься их восстановлением с помощью интеллектуальных зарядных устройств, которые позволяют индивидуально выполнять отбраковку и цикл заряд - разряд с каждым элементом. А поскольку таких устройств автоматически работающих с аккумуляторами любой емкости не существует, то они предназначены для элементов строго определенной емкости или должны иметь управляемые токи зарядки, разрядки!

Аккумуляторные батареи стали основным источником питания современных устройств, работающих на электронной основе. Наиболее популярными считаются Ni-MH аккумуляторы, так как они практичны, долговечны и могут обладать повышенной ёмкостью. Но для сохранности технических характеристик во время всего срока эксплуатации следует узнать некоторые особенности работы накопителей данного класса, а также правильные условия зарядки.

Стандартные Ni-MH аккумуляторы

Как правильно заряжать Ni-MH аккумуляторы

При начале зарядки любого автономного накопителя, будь это батарейка простого смартфона или высокоемкостной АКБ грузовика, в нём начинается ряд химических процессов, из-за которого происходит накопление электрической энергии. Получаемая накопителем электроэнергия не исчезает, часть её уходит на заряд, а определённый процент – на тепло.

Параметр, по которому определяется эффективность зарядки батареи, называется коэффициентом полезного действия автономного накопителя. КПД позволяет определить, как соотношение полезной работы и ненужных её потерь, уходящих на нагрев. И в данном параметре, аккумуляторы и батареи никель-металлогидридные сильно уступают Ni-Cd накопителям, так как слишком большая часть энергии, затрачиваемой на их заряд, параллельно уходит и на нагрев.

Никель-металлогидридный накопитель можно восстановить самостоятельно

Чтобы быстро и корректно зарядить никель-металлогидридную батарею, необходимо установить правильную величину тока. Данная величина определяется, исходя из такого параметра как ёмкость автономного источника питания. Можно увеличить силу тока, но делать это следует в определённые этапы зарядки.

Специально для никель-металлогидридных аккумуляторов определены 3 разновидности зарядки:

  • Капельная. Протекает в ущерб долговечности батареи, не прекращается даже по достижению 100% заряда. Но при капельной зарядке выделяется минимальное количество тепла.
  • Быстрая. Следуя названию, можно сказать что данный вид зарядки протекает немного быстрее, обусловлено это входным напряжение в пределах 0.8 Вольта. При этом, уровень КПД повышается до 90%, что считается очень хорошим показателем.
  • Режим дозаряда. Необходим для заряда накопителя до полной его ёмкости. Данный режим проводится с использованием малого тока на протяжении 30-40 минут.

На этом особенности заряда заканчиваются, теперь следует рассмотреть каждый режим более подробно.

Особенности капельной зарядки

Основной особенностью капельной зарядки NiZn, а также Ni-MH аккумуляторов, является снижение её нагрева во время протекания всего процесса, который может длиться до восстановления полной ёмкости накопителя.

Стандартное зарядное устройство для Ni-MH батарей

Чем примечательна данная разновидность зарядки:

  • Маленький ток, соответственно – отсутствие чётких рамок по разнице потенциалов. Напряжение заряда может достигать своего максимума без какой-либо негативного воздействия на срок службы накопителя.
  • Коэффициент полезного действия в пределах 70%. Конечно, данный показатель ниже остальных, и время, необходимое для полного восстановления ёмкости, увеличивается. Но при этом снижается нагрев батареи.

Вышеперечисленные показатели можно отнести к категории положительных. Теперь следует обратить внимание на отрицательные качества капельной зарядки.

  • Капельный процесс восстановления не прекращается даже после восстановления полной ёмкости. Постоянное воздействие даже маленького тока, при полном заряде батареи, быстро приводит её в негодность.
  • Необходимо рассчитывать время заряда, исходя из таких факторов как сила тока, напряжение и . Не очень удобно, и у некоторых пользователей может занять слишком много времени.

Современные никель-металлогидридные источники питания не так негативно воспринимают капельный заряд, как более старые модели. Но производители зарядных устройств постепенно отказываются от применения подобного восстановления ёмкости аккумулятора.

Быстрый режим заряда Ni-MH батарей

Номинальными показателями заряда никель-металлогидридных батарей являются:

  • Сила тока в пределах 1 А.
  • Напряжение от 0.8 В.

Приведены те данные, от которых следует отталкиваться. Для быстрого режима заряда лучше всего устанавливать силу тока, равную 0,75 А. Этого вполне достаточно, чтобы за короткий промежуток времени восстановить накопитель и при этом не снизить его эксплуатационный срок. Если поднять ток более 1 А, то последствием может быть аварийный сброс давления, при котором открывается спусковой клапан.

ЗУ с точными показаниями силы тока

Для того, чтобы режим быстрой зарядки не причинил вреда батареи, необходимо следить за окончанием самого процесса. КПД быстрого восстановления ёмкости составляет около 90%, что считается очень хорошим показателем. Но в конце процесса зарядки КПД резко падает, и последствием такого падения становится не только выделение большого количества тепла, но и резкое увеличение давления. Конечно, такие показатели негативно сказываются на долговечности накопителя.

Процесс быстрого заряда состоит из нескольких этапов, которые следует рассмотреть более подробно.

Подтверждение наличия показателей заряда

Последовательность процесса:

  1. На полюса накопителя подаётся предварительный ток, который составляет не более 0.1 А.
  2. Напряжение заряда в пределах 1.8 В. При более высоком показатели быстрая зарядка батареи не начнётся.

Никель-металлогидридный элемент средней ёмкости

Логическая схема в зарядных устройствах запрограммирована на отсутствие батареи. Это означает, что, если выходное напряжение будет составлять более 1.8 В, то зарядное устройство воспримет такой показатель как отсутствие источника питания. Высокая разница потенциалов также возникает при повреждении аккумуляторной батареи.

Диагностика ёмкости источника питания

Перед началом восстановления ёмкости, ЗУ должно определить уровень заряженности источника питания, так быстрый процесс восстановления не может начаться, если он полностью разряжен и разница потенциалов составляет менее 0.8 В.

Для восстановления частичной ёмкости никель-металлогидридного накопителя предусмотрен дополнительный режим – предварительный заряд. Это щадящий режим, который позволяет аккумулятору «проснуться». Используется не только после полного восстановления ёмкости, но и при долгом хранение батареи.

Следует помнить, что для сохранности эксплуатационного срока никель-металлогидридных источников питания, их нельзя полностью разряжать. Или, если другого выхода нет, то делать это как можно реже.

Что такое пред-зарядка? Особенности процесса

Чтобы знать, как правильно заряжать аккумулятор, необходимо разобраться с процессом пред-заряда.

Главной особенностью режима предварительного восстановления ёмкости является то, что на него отводится определённый промежуток времени, не более 30 минут. Сила тока устанавливается в пределах от 0.1 А до 0.3 А. При таких параметрах отсутствует нежелательный нагрев, и аккумулятор может спокойно «проснуться». При превышении разницы потенциалов более 0.8 В пред-заряд автоматически отключается и начинается следующая ступень восстановления ёмкости.

Разнообразие никель-металлогидридной продукции

Если по истечении 30 минут напряжение источника питания не достигло отметки в 0.8 В, данный режим прекращается, так как зарядное устройство определяет источник питания как неисправный.

Быстрый заряд батареи

Данный этап и является той самой, быстрой зарядкой источника питания. Он протекает с обязательным соблюдением нескольких основных параметров:

  • Контроль за силой тока, которая должна находиться в пределах 0.5-1 А.
  • Контроль за временными показателями.
  • Постоянное сравнение разницы потенциалов. Отключение процесса восстановления, если данный показатель упадёт на 30 мВ.

Очень важно следить за изменением параметров напряжения, так как по окончанию быстрой зарядки аккумулятор начинает быстро нагреваться. Поэтому ЗУ включают в себя отдельные узлы, отвечающие за контроль напряжения источника питания. Для этого специально используется метод контроля по дельте напряжения. Но некоторые производители ЗУ применяют современные разработки, которые отключают устройство при длительном отсутствии каких-либо изменений разницы потенциалов.

Более дорогим вариантом является установка котроллера за изменением температуры. Например, при повышении температуры Ni-MH накопителя, быстрый режим восстановления ёмкости автоматически отключается. Для этого необходимо дорогостоящие температурные датчики или радиоэлектронные схемы, соответственно, повышается цена и на само зарядное устройство.

Дозарядка

Данный этап очень похож на предварительную зарядку аккумуляторной батареи, при котором ток устанавливается в пределах 0.1-0.3 А, а весь процесс занимает не более 30 минут. Дозарядка необходима, так как именно она позволяет выровнять электронные заряды в источнике питания, и увеличить его эксплуатационный срок. Но при более длительном восстановлении, наоборот, происходит ускоренное разрушение аккумулятора.

Особенности сверхбыстрой зарядки

Существует ещё одно важное понятие восстановления ёмкости Ni-MH батарей – сверхбыстрая зарядка. Которая не только быстро восстанавливает источник питания, но и продлевает его эксплуатационный срок. Связано это с одной интересной особенностью Ni-MH аккумуляторов.

Металлогидридные источники питания можно заряжать повышенными токами, но только по достижению 70% ёмкости. Если пропустить этот момент, то завышенный параметр силы тока приведёт только к быстрому разрушению аккумулятора. К сожалению, производители ЗУ считают установку подобных контролирующих узлов на свои изделия слишком затратной, и используют более простую быструю зарядку.

Удобные пальчиковые источники питания

Проводить сверхбыструю зарядку следует только на новых батареях. Повышенные токи приводят к быстрому нагреву, следующей стадией которого становится открытие запорного клапана давления. После открытия запорного клапана, никелевый аккумулятор не подлежит восстановлению.

Выбираем зарядное устройство для Ni-MH батарей

Некоторые производители ЗУ делают уклон в сторону изделий, изготовленных специально для заряда Ni-MH батарей. И это понятно, так как данных источников питания наибольшее количество во многих электронных устройствах.

Следует более подробно рассмотреть функционал зарядных устройств, созданных специально для восстановления ёмкости никель-металлогидридных аккумуляторов.

  • Обязательное наличие нескольких защитных функций, которые сформированы определённым сочетанием некоторых радиоэлементов.
  • Наличие ручного или автоматического режима регулировки силы тока. Только таким образом можно будет устанавливать различные этапы зарядки. Разность потенциалов обычно берётся постоянной.
  • Автоматическая подзарядка аккумуляторной батареи, даже по достижении стопроцентной ёмкости. Это позволяет постоянно поддерживать основные параметры источника питания, не в ущерб эксплуатационному сроку.
  • Распознавание источников тока, работающих по-другому принципу. Очень важный параметр, так как некоторые разновидности аккумуляторов, при слишком большом токе заряда могут взорваться.

Последняя функция также относится к разряду особенных и требует монтажа специального алгоритма. Поэтому многие производители предпочитают отказаться от неё.

Ni-MH источники питания пользуются широкой популярностью из-за своей долговечности, простоты эксплуатации, а также доступной цены. Многие пользователи успели оценить положительные качества данных изделий.

NiMH означает «никель-металлогидрид». Правильная зарядка является ключом к поддержанию производительности и долговечности. Данную технологию нужно знать для того, чтобы заряжать NiMH. Восстановление NiMH-элементов — достаточно сложный процесс, потому что пик напряжения и последующее падение меньше, а следовательно, показатели определяются сложнее. Чрезмерная зарядка приводит к перегреву и повреждению элемента, после чего теряется емкость с последующей утратой функциональности.

Батарея — электрохимическое устройство, в котором электрическая энергия преобразуется и сохраняется в химической форме. Химическая энергия легко преобразуется в электрическую. NiMH работает по принципу, основанному на поглощении, высвобождении и переносе водорода внутри двух электродов.

Батареи NiMH состоят из двух металлических полос, которые выступают в качестве положительных и отрицательных электродов, а также изолирующего сепаратора из фольги между ними. Этот энергетический «бутерброд» наматывается и помещается в аккумуляторную батарею вместе с жидким электролитом. Положительный электрод обычно состоит из никеля, отрицательный — из гидрида металла. Отсюда и название «NiMH», или «никель-металл-гидрид».

Преимущества:

  1. Содержит меньше токсинов и являются экологически чистым, поддаются переработке.
  2. Эффект памяти выше, чем у Ni-Cad.
  3. Гораздо безопаснее, чем литиевые батареи.

Недостатки:

  1. Глубокая разрядка сокращает срок службы и вырабатывает тепло при быстрой зарядке и высокой нагрузке.
  2. Саморазряд больше по сравнению с другими батареями, его нужно учитывать перед тем как заряжать NiMH.
  3. Требуется высокий уровень технического обслуживания. Батарея должна быть полностью разряженной, чтобы предотвратить образование кристаллов в процессе зарядки.
  4. Более дорогостоящий, чем Ni-Cad аккумулятор.

Никель-металлогидридная ячейка имеет много характеристик, аналогичных NiCd, например, кривую разряда (с учетом дополнительной зарядки), которую может принять батарея. Она нетерпима к перезарядке, вызывающей снижение емкости, что представляет серьезную проблему для разработчиков зарядных устройств.

Характеристики тока, которые необходимы для того, чтобы правильно зарядить аккумулятор NiMH:

  1. Номинальное напряжение — 1.2V.
  2. Удельная энергия — 60-120 Вт-час/кг.
  3. Плотность энергии — 140-300 Вт-час/кг.
  4. Удельная мощность — 250-1000 Вт/кг.
  5. Эффективность зарядки / разрядки — 90%.

Эффективность зарядки никелевых батарей составляет в диапазоне от 100% до 70% от полной емкости. Вначале происходит небольшое повышение температуры, но позже, когда уровень заряда поднимается, КПД падает, выделяя тепло, что требуется учитывать перед тем как заряжать NiMH.

Когда аккумулятор NiCD разряжается до определенного минимума напряжения, а затем заряжается, необходимо принять меры, чтобы уменьшить эффект кондиционирования (примерно каждые 10 циклов зарядки/разрядки), иначе он начнет терять емкость. Для NiMH такое требование не требуется, поскольку эффект для него незначителен.

Тем не менее такой процесс восстановления удобен и для никель-металлогидридных устройств, его рекомендуют учитывать перед тем, как заряжать NiMH аккумуляторы. Процесс повторяют три-пять раз, прежде чем они достигнут полной емкости. Процесс кондиционирования перезаряжаемых батарей гарантирует, что они будут работать долгие годы.

Существует несколько способов зарядки, которые можно использовать с никель-металлогидридными батареями. Они, как и NiCds, требуют источника постоянного тока. Скорость обычно указывается на корпусе ячейки. Она не должна превышать технологические нормы. Пределы границ зарядки четко регламентированы производителями. Перед эксплуатацией батарей нужно четко знать, каким током заряжать NiMH аккумуляторы. Существует несколько методов, которые используются для предотвращения сбоя:

Параллельная зарядка батарей затрудняет качественное определение окончания процесса. Это связано с тем, что нельзя быть уверенным, что каждая ячейка или пакет имеют одинаковое сопротивление, и поэтому некоторые из них будут потреблять больше тока, чем другие. Это означает, что нужно использовать отдельную цепь зарядки для каждой линии в параллельном блоке. Следует установить, каким током заряжать NiMH, определив балансировку, например, используя резисторы такого сопротивления, что будут доминировать в управлении параметрами.

Современные алгоритмы были разработаны для обеспечения точной зарядки без использования термистора. Эти устройства аналогичны Delta V, но имеют специальные методы измерения для обнаружения полного заряда, обычно включающие некоторый цикл, когда напряжение измеряется по временному интервалу и между импульсами. Для многоэлементных пакетов, если они не находятся в одном и том же состоянии и не сбалансированы по емкости, они могут заполняться по одному за раз, подавая сигнал об окончании этапа.

Чтобы сбалансировать их, потребуется несколько циклов. Когда батарея достигает конца заряда, кислород начинает образовываться на электродах и рекомбинировать на катализаторе. Новая химическая реакция создает тепло, которое легко измеряется термистором. Это самый безопасный способ определения окончания процесса во время быстрого восстановления.

Ночная зарядка — самый дешевый способ зарядки никель-металлогидридной батареи при C/10, что ниже 10% от номинальной емкости в час. Это нужно учитывать, чтобы правильно заряжать NiMH. Таким образом, аккумулятор емкостью 100 мАч будет заряжаться при 10 мА в течение 15 часов. Этот метод не требует датчика окончания процесса и обеспечивает полный заряд. Современные элементы имеют катализатор рециркуляции кислорода, который предотвращает повреждение батареи при воздействии электротоком.

Этот метод не может использоваться, если скорость зарядки превышает C/10. Минимальное напряжение, необходимое для полной реакции, зависит от температуры (не менее 1,41 В на элемент при 20 градусах), что нужно учитывать, чтобы правильно заряжать NiMH. Продолжительное восстановление не вызывает вентиляции. Оно слегка нагревает батарею. Чтобы сохранить срок службы, рекомендуется использовать таймер с диапазоном от 13 до 15 часов. В зарядном устройстве Ni-6-200 есть микропроцессор, который сообщает о состоянии заряда через светодиод, а также выполняет функцию синхронизации.

Быстротечный процесс заряда

Используя таймер, можно заряжать C/3.33 в течение 5 часов. Это немного рискованно, так как батарея предварительно должна быть полностью разряжена. Один из способов убедиться в том, что этого не произойдет, — автоматическая разрядка аккумулятора, выполняемая зарядным устройством, который затем запускает процесс восстановления на 5 часов. Преимущество этого метода состоит в том, чтобы исключить любую возможность создания негативной памяти батареи.

В настоящее время не все производители выпускают подобные зарядные устройства, но микропроцессорная плата используется, например, в зарядном устройстве C/10 /NiMH-NiCad-solar-charge-controller и может быть легко модифицирован для выполнения разряда. Для рассеивания энергии частично заряженной батареи в течение разумного промежутка времени потребуется блок рассеивания мощности.

Если используется температурный монитор, аккумуляторы NiMH можно заряжать со скоростью до 1C, другими словами, 100% емкости в ампер-часах в течение 1,5 часов. Контроллер заряда батареи PowerStream делает это совместно с платой управления, которая способна измерять напряжение и ток для более сложных алгоритмов. При повышении температуры процесс должен быть прекращен, а при значение dT/dt должен быть установлен на 1-2 градуса в минуту.

Существуют новые алгоритмы, которые используют микропроцессорное управление при использовании сигнала -dV для определения окончания заряда. На практике они работают очень хорошо, поэтому современные устройства используют эту технологию, которая включает в себя процессы включения и выключения для измерения напряжения.

Спецификации адаптера

Важной проблемой является срок службы батарей или общая стоимость периода службы системы. В этом случае производители предлагают устройства с микропроцессорным управлением.

Алгоритм для идеального зарядного устройства:

  1. Мягкий старт. Если температура выше 40 градусов или ниже нуля, начинают с зарядки C/10.
  2. Опция. Если напряжение разряженной батареи выше 1,0 В/элемент, разряжают батарею до 1,0 В/элемент, а затем переходят к быстрой зарядке.
  3. Быстрая зарядка. При 1 градусе, пока температура не достигнет 45 градусов или dT не указывает на полный заряд.
  4. После завершения быстрой зарядки заряжают при C/10 в течение 4 часов, чтобы обеспечить полную зарядку.
  5. Если напряжение заряженного NiMH аккумулятора поднимается до 1,78 В/элемент, прекращают работу.
  6. Если время быстрой зарядки превышает 1,5 часа без перерыва, ее останавливают.

Теоретически подзарядка — это скорость заряда, которая достаточно высока, чтобы держать аккумулятор полностью заряженным, но достаточно низкая, чтобы избежать перезарядки. Определение оптимальной скорости подзарядки для конкретной батареи немного сложно описать, но общепризнанно, что она составляет около десяти процентов от емкости батареи, например, для Sanyo 2500 мАч AA NiMH оптимальная скорость подзарядки — 250 мА или ниже. Ее нужно учитывать, чтобы правильно заряжать NiMH аккумуляторы.

Наиболее частой причиной преждевременного выхода из строя аккумулятора является перезарядка. Типы зарядных устройств, которые чаще всего вызывают ее, — это так называемые «быстрые устройства» на 5 или 8 часов. Проблема с этими приборами состоит в том, что у них действительно нет механизма контроля процесса.

Большинство из них имеют простую функциональность. Они заряжаются с полной скоростью в течение фиксированного периода времени (обычно пять или восемь часов), а затем отключаются или переключаются на более низкую «ручную» скорость. Если они используются должным образом, то все в порядке. Если они применяются неправильно, то срок службы батареи сокращается несколькими способами:

  1. Если полностью заряженные или частично заряженные батареи вставлены в устройство, оно не может это почувствовать, поэтому полностью заряжает аккумуляторы, для которых оно предназначено. Так, емкость аккумулятора падает.
  2. Другой распространенной ситуацией является прерывание цикла зарядки в процессе. Однако после этого следует повторное подключение. К сожалению, это ведет к повторному запуску полного цикла зарядки, даже если предыдущий цикл практически завершен.

Самый простой способ избежать этих сценариев — использовать интеллектуальное зарядное устройство с микропроцессорным управлением. Оно может определять, когда батарея полностью заряжена, а затем — в зависимости от ее конструкции — либо полностью отключаться, либо переключаться в режим подзарядки.

Для того чтобы заряжать NiMH iMax, понадобится специальное зарядное устройство, так как использование неправильного метода может сделать батарею бесполезной. Многие пользователи считают iMax B6 лучшим выбором для зарядки NiMH. Он поддерживает процесс до 15 ячеистых батарей, а также множество настроек и конфигураций для разных типов аккумуляторов. Рекомендуемое время зарядки не должно превышать 20 часов.

Как правило, производитель гарантирует 2000 циклов зарядки / разрядки от стандартной батареи NiMH, хотя это количество может отличаться по условиям эксплуатации.

Алгоритм работы:

  1. Заряжаем NiMH iMax B6. Необходимо подключить шнур питания к розетке с левой стороны устройства, принимая во внимание форму на конце кабеля, чтобы убедиться, что выполнено правильное подсоединение. Вставляем его до упора и останавливаем нажатие, когда появится звуковой сигнал и приветственное сообщение на экране дисплея.
  2. Используют серебряную кнопку в крайнем левом углу, чтобы просмотреть первое меню и выбрать тип батареи, которую нужно зарядить. Нажатие крайней левой кнопки подтвердит выбор. Кнопка справа будет прокручивать опции: зарядка, разрядка, баланс, быстрая зарядка, хранение и другие.
  3. Две центральные кнопки управления помогут выбрать нужный номер. Нажав крайнюю правую кнопку для входа, можно перейти к настройке напряжения, снова прокручивая с помощью двух центральных кнопок и нажав ввод.
  4. Используют несколько кабелей для подключения аккумулятора. Первый набор выглядит как оборудование для лабораторных проводов. Он часто поставляется в комплекте с зажимами для крокодилов. Розетки для подключения находятся на правой стороне устройства рядом с нижней частью. Их достаточно легко обнаружить. Именно так можно зарядить NiMH с iMax B6.
  5. Затем нужно подключить свободный кабель аккумулятора к концу красного и черного зажимов, создавая замкнутый контур. Это может быть немного рискованно, особенно если пользователь в первый раз выполнит неправильные настройки. Нажимают и удерживают кнопку ввода в течение трех секунд. Затем экран должен информировать о том, что он проверяет батарею, после чего пользователя попросят подтвердить настройку режима.
  6. Во время зарядки аккумулятора можно прокручивать различные экраны дисплея с помощью двух центральных кнопок, которые сообщают информацию о процессе зарядки в различных режимах.

Самый стандартный совет: полностью разрядить батареи, а затем зарядить их. Хотя это является обработкой «эффекта памяти», в никель-кадмиевых батареях нужно быть осторожным, так как легко повредить их из-за чрезмерной разрядки, что приводит к «обращению полюсов» и к необратимым процессам. В некоторых случаях электроника аккумуляторов выполнена таким образом, что предотвращает негативные процессы, отключаясь до того, как они произойдут, но более простые устройства, например, для фонариков, этого не делают.

Необходимо:

  1. Быть готовым заменить их. Никель-металлогидридные батареи не вечны. После окончания ресурса они перестанут работать.
  2. Купить «умное» зарядное устройство, которое с помощью электроники контролирует процесс и предотвращает перезарядку. Это не только лучше для аккумуляторов, но и потребляет меньше энергии.
  3. Извлечь батарею, когда перезарядка завершена. Ненужное время на устройстве означает, что для его зарядки используется больше «струйной» энергии, поэтому увеличивается износ и расходуется больше энергии.
  4. Не разряжать батареи полностью, чтобы продлить срок их службы. Несмотря на все советы об обратном, полная разрядка фактически сокращает срок их службы.
  5. Хранить NiMH батареи при комнатной температуре в сухом месте.
  6. Избыточное тепло может повредить батареи и привести к их быстрой разрядке.
  7. Рассмотреть возможность использования модели с низким уровнем заряда.

Таким образом, можно подвести черту. Действительно никель-металлогидрид батареи более подготовлены производителем для работы в современных условиях, а правильная зарядка аккумуляторов с применением умного устройства обеспечит их производительность и долговечность.

Долгое время не мог закинуть результаты своих эксперементов в ЖЖ... дома инета сейчас нет, на работе большая загруженность.

Тем не мение работы не встали, а двигаются и вскоре тут появится отчет о проделанной работе.

на данном этапе я наткнулся на то, что все АКБ имеющиеся у меня в наличии, постепенно пришли в негодность... результатом - испытания уже автономного устройства откладываются...

Порыл инет на эту тему и честно копипастю сюда кусок статейки, непосредственно алгоритм восстановления Ni-Mh

Алгоритм восстановления Ni-MH аккумуляторов

Как было сказано выше, потеря емкости аккумулятора связана с отложением продуктов реакции на электродах. Для восстановления аккумулятора необходимо вернуть эти продукты в исходное состояние.

Для этого необходимо иметь в наличии следующее:

  • источник питания с плавной регулировкой напряжения, индикаторами силы тока и напряжения (можно также воспользоваться отдельными вольтметром и амперметром);
  • подготовленные для зарядки аккумуляторные элементы;
  • нагрузку - реостат или лампочку, сопротивление которых необходимо подобрать исходя из формулы:

R = U / I [Ом] , где U - номинальное напряжение батареи [B], I - необходимая сила тока [A], которая берется из расчета I = 0.4 С(бат).

Желательно также иметь в наличии термодатчик или термореле, чтобы можно было вовремя отключить ток при перегреве.

Перед зарядкой разрядим аккумулятор до напряжения порядка 1 В - подключаем вольтметр и нагрузку параллельно элементу. Периодически контролируем напряжение (оно не должно упасть ниже 0.9 В - могут начаться необратимые процессы). Периодически контролируем температуру - она не должна подниматься выше 50 градусов Цельсия. В противном случае необходимо отключать нагрузку до тех пор, пока элемент не остынет до комнатной температуры. После разрядки необходимо выждать время для нормализации процессов внутри элемента (15-20 минут). За это время элемент «регенерируется», напряжение повысится, и его можно доразрядить до напряжения 0.9 В. Далее, выждав 10-15 минут, можно приступать к зарядке.

Зарядка

Для зарядки подсоединяем амперметр последовательно к заряжаемому элементу, источник питания и вольтметр - параллельно, одним контактом к свободному полюсу аккумулятора, другим - к свободному контакту амперметра. Термодатчик или чувствительный элемент, термореле, желательно закрепить на аккумуляторе с использованием термопасты для более точных измерений. Устанавливаем регулятор напряжения источника питания на минимальное напряжение (реостат - на максимальное сопротивление). Далее - плавно поднимаем напряжение так, чтобы сила тока на амперметре достигла значения:

I(зар) = 0.1C(бат)

Например, для аккумулятора емкостью 1500 мАч максимальная сила тока будет 150 мА. Сила тока будет постепенно снижаться, и соответственно, необходимо повышать напряжение. Сначала - раз в 3-5 минут в течение первого часа, далее - каждый час. Как только напряжение достигнет 1.3 номинального (1.4-1.5 вольт), нужно оставить аккумулятор на зарядке как есть - далее повышать напряжение нельзя. Когда сила тока упадет до значения близкого к нулю (через 4-6 часов), нужно отключить зарядку, подождать 15-20 минут для нормализации процессов, и поставить заряжаться на 8 часов. На всем протяжении зарядки необходимо следить за тем, чтобы температура не поднималась выше 50 градусов Цельсия. Если же температура превышает это значение - надо понизить ток зарядки (в 1.5-2 раза) до тех пор, пока аккумулятор не остынет до 30 градусов. Затем можно плавно поднять ток до номинального значения. Для восстановления первоначальной емкости потребуется 3-4 таких цикла.

Методы заряда Ni-Cd и Ni-MH аккумуляторов

Существует много различных методов заряда NiCd или NiMH аккумуляторов. Но все их можно разделить на 4 основные группы:

– стандартный заряд – заряд постоянным током, равным 1/10 от величины номинальной емкости аккумулятора, в течение примерно 15 часов.

– быстрый заряд – заряд постоянным током, равным 1/3 от величины номинальной емкости аккумулятора в течение примерно 5 часов.

– ускоренный или дельта V заряд – заряд с начальным током заряда, равным величине номинальной емкости аккумулятора, при котором постоянно измеряется напряжение на аккумулятора и заряд заканчивается после того, как аккумулятор полностью заряжен. Время заряда примерно 1 час.

– реверсивный заряд – импульсный метод заряда, при котором короткие импульсы разряда распределяются между длинными зарядными импульсами.

Несколько слов о терминологии. Емкость аккумулятора часто обозначается буквой “C”, и Вы часто будете видеть ссылки подобные 1/20 C или C/20. Когда говорят о разряде, равном 1/10 C, то это означает разряд током, равным десятой части от величины номинальной емкости аккумулятора.

Так например, для аккумулятора емкостью 600 мА*час это будет разряд током 600/10 = 60mA.

Теоретически аккумулятор емкостью 600 мА*час может отдавать ток 600mA в течение одного часа, 60 мА в течение 10 часов, или 6mA в течение 100 часов. Практически же, при высоких значениях тока разряда номинальная емкость никогда не достигается, а при низких токах превышается.

Аналогично при заряде аккумуляторов, значение 1/10 C означает заряд током, равным десятой части заявленной емкости аккумулятора. Медленный заряд в 1/10 C – обычно безопасен для любого аккумулятора.

Стандартный (или медленный) метод заряда

Этот метод подразумевает заряд током приблизительно равным 50 мА (для AA элементов) в течение 15 часов. При таком токе, диффузия кислорода более чем достаточна, чтобы предпринимать какие-либо меры для уменьшения тока после достижения полного заряда.

Безусловно, что в этом случае существует риск получить уменьшение напряжения при перезаряде.

Рис. 3

На графике (Рис.3) ток заряда поддерживается постоянно равным 0. 1C в течение 16 часов. Во время заряда наблюдается повышение напряжения на элементе аккумулятора. (По окончании заряда и при перезаряде напряжение начинает уменьшаться. Примеч. Переводчика.)

Следует отметить, что NiCd и NiMH аккумуляторы всегда заряжаются постоянным током, в отличие от свинцово-кислотных, которые заряжаются при постоянном напряжении.

Метод быстрого заряда.

Разновидностью медленного заряда является метод быстрого заряда, при котором используется ток заряда от 0.3 до 1.0C. В этом случае существенно важно, чтобы аккумулятор был полностью разряжен перед зарядом, так что такие зарядные устройства часто начинают заряд с цикла разряда для того, чтобы зарядить аккумулятор до его максимальной емкости.

Рис. 4

На графике (Рис.4) заряд током в 1/3 C поддерживался от 4 до 5 часов. Этот метод заряда имеет тенденцию к перегреву аккумулятора, особенно при заряде током близком к 1 C.

Метод D V заряда

Наилучший метод заряда NiCd и NiMH аккумуляторов – так называемый метод дельта V (метод измерения изменения напряжения). Если измерять напряжение на выводах элемента в течение заряда постоянным током, то можно заметить, что напряжение медленно повышается во время заряда. В точке полного заряда, напряжение на элементе будет кратковременно уменьшаться.

Величина уменьшения небольшая, примерно 10 mV на элемент для NiCd и меньше для NiMH, но явно выражена. Метод дельта V заряда почти всегда сопровождается измерением температуры, что обеспечивает дополнительный критерий оценки степени заряда аккумулятора (а для верности зарядные устройства для больших аккумуляторов высокой емкости обычно имеют кроме этого и таймеры безопасности).

Рис. 5

На графике (Рис.5) использовался ток заряда равный 1 C и после достижения полного заряда, ток заряда уменьшился до 1/30 … 1/50 C для компенсации явления саморазряда аккумулятора.

Существуют электронные схемы, разработанные специально для реализации метода дельта V заряда. Например MAX712 и 713. Реализация этого метода более дорога, чем другие, но дает хорошо воспроизводимые результаты.

Следует отметить, что в аккумуляторе с хотя бы одним плохим элементом из цепочки последовательно соединенных, метод дельта V заряда может не работать и привести к разрушению остальных элементов, поэтому необходимо быть осторожным.

Другой экономичный путь обнаружения момента полного заряда аккумулятора заключается в измерении температуры элемента. Температура элемента резко повышается при достижении полного заряда. И когда она повысится на 10° С или значительно выше окружающей среды, прекратите заряд, или перейдите в режим тонкоструйного заряда. При любом методе заряда, если применяются большие токи заряда, требуется предохранительный таймер. На всякий случай не допускайте ток заряда более, чем значение двойной емкости элемента,. (т.е. для элемента емкостью 800 мА*час, не более, чем 1600 мА*часа заряд).

NiMH аккумуляторы имеют специфические проблемы с зарядом. Величина дельта V очень мала (примерно 2mV на элемент) и ее более трудно обнаружить, чем в случае NiCd аккумуляторов.

Поэтому NiMH аккумуляторы для сотовых телефонов имеют температурные датчики в качестве резервного средства для обнаружения дельта V .

Одна из специфических проблем, связанных с зарядом по этому методу заключается в том, что при использовании в автомобилях электрические шумы и помехи маскируют обнаружение дельта V, и телефоны более склонные к управлению зарядом по температурному ограничению. Это может привести к порче аккумулятора в автомобиле, где телефон постоянно подключен (например автомобильный комплект) и многократные запуски и остановки двигателя имеет место. Каждый раз, когда зажигание выключается на несколько минут и затем включается обратно, новый цикл заряда инициируется.

При использовании нерегулируемого зарядного устройства, которое не обеспечивает обнаружение момента наступления полного заряда любым известным способом, необходимо ограничить ток заряда. Практически все NiCd элементы могут заряжаться током C/10 (приблизительно 50 мА для AA элемента) неопределенно долго без охлаждения. При этом, естественно, не удасться избежать уменьшения напряжения после полного заряда, но и аккумулятор не испортится. Все зарядные устройства, непосредственно встроенные в телефоны, имеют электронные схемы обнаружения полного заряда.

Если хотите ускорить процесс, то заряд током величиной C/3 зарядит элементы примерно через 4 часа, и при таком токе большинство элементов лишь немного перезарядится без больших неприятностей. То есть, если Вы заканчиваете процесс заряда в течение часа после достижения полного заряда, то это – хорошо. Исключение перезаряда – вот к чему необходимо стремиться. При токе заряда более C/2 необходимо использовать только зарядные устройства с автоматическими средствами обнаружения полного заряда. При таком токе и выше, элементы аккумулятора могут быть при перезаряде легко повреждены. Те элементы, которые содержат в своем составе поглотители кислорода, могут не охлаждаться, но будут весьма горячими.

С хорошей электронной схемой управления зарядом могут быть использованы токи заряда более 1C – проблемой в этом случае становится уменьшение эффективности заряда и внутреннее нагревание от потерь на внутреннем сопротивлении. Однако, если Вы не спешите, избегайте заряд током большим, чем 1C.

Реверсивный метод заряда

В анализаторах аккумуляторов Cadex 7000 и CASP/2000L (H) используются реверсивные импульсные методы заряда, при котором короткие импульсы разряда распределяются между длинными зарядными импульсами. Считается, что такой метод заряда улучшает рекомбинацию газов, возникающих в процессе заряда, и позволяет проводить заряд большим током за меньшее время. Кроме того, восстанавливается кристаллическая структура кадмиевых анодов, устраняя тем самым "эффект памяти".

На рис.6 схематично изображена временная диаграмма реверсивного метода заряда NiCd и NiMH аккумуляторов, реализованная в анализаторе Cadex 7000. Цифрой 1 обозначен нагрузочный импульс, а цифрой 2 – зарядный.

Рис. 6

Величина обратного импульса нагрузки определяется в процентах от тока заряда в диапазоне от 5 до 12 %. Оптимальное значение 9 %. Так например, для NiCd аккумулятора емкостью 1800 мА*час, зарядный ток величиной в 1С равен 1800 мА. Тогда импульс нагрузочного тока будет равен 1800 мА * 0.09 = 162 мА. Выбирайте значение равное 5 % для NiCd емкостью 500 мА*час и менее.

Примечание переводчика:

Был проведен единичный эксперимент по измерению параметров метода реверсивного заряда NiCd и NiMH аккумуляторов емкостью 1000 мА*час.

Измерения проводились с помощью осциллографа, путем измерения параметров импульса напряжения на резисторе С5 -16В – 0.2 Ом +-1%, последовательно включенном в положительную цепь заряда аккумулятора. По результатам измерений получилось:

Длительность импульса "1" составляет ~30 мс, а период следования ~200 мс;

Амплитуды импульсов тока "1" и "2" примерно одинаковы и равны значению тока заряда.

Дополнительная информация:

Быстрый заряд NiMH аккумуляторов осуществляется постоянным током с отслеживанием момента полного заряда по моменту начала уменьшения напряжения на и (или) максимально допустимому приращению температуры. Типовые характеристики быстрого заряда NiMH аккумуляторов в зависимости от тока заряда приведены на Рис. 7. Дополнительно на рисунке приведены график изменения температуры внутри аккумулятора и изменения тока в процессе заряда.

Рис. 7. Типовые характеристики быстрого заряда NiMH аккумуляторов

Из книги ОБЩИЕ ТРЕБОВАНИЯ К КОМПЕТЕНТНОСТИ ИСПЫТАТЕЛЬНЫХ И КАЛИБРОВОЧНЫХ ЛАБОРАТОРИЙ автора Автор неизвестен

5.4.4 Нестандартные методы В случае, если необходимо использовать методы, не являющиеся стандартными, они должны быть согласованы с клиентом и содержать четкое описание требований клиента и цели испытания и/или калибровки. Прежде чем быть использованным, разработанный

Из книги ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ВСТРОЕННЫХ СИСТЕМ. Общие требования к разработке и документированию автора Госстандарт России

Из книги Метрология, стандартизация и сертификация: конспект лекций автора Демидова Н В

4.2.1 Методы разработки ПО Разработчик должен использовать для всех работ по созданию ПО систематизированные, зарегистрированные методы. План разработки ПО должен содержать описание этих методов или включать в себя ссылки на источники, в которых они

Из книги Информатика и информационные технологии автора Цветкова А В

10. Методы стандартизации Метод стандартизации – это совокупность средств достижения целей стандартизации.Рассмотрим основные методы стандартизации.1. Упорядочение объектов стандартизации является универсальным методом стандартизации товаров, работ и услуг. Данный

Из книги Метрология, стандартизация и сертификация автора Демидова Н В

Из книги Создаем робота-андроида своими руками автора Ловин Джон

43. Методы стандартизации Метод стандартизации – это совокупность средств достижения целей стандартизации. Рассмотрим основные методы стандартизации.1. Упорядочение объектов стандартизации является универсальным методом стандартизации товаров, работ и услуг. Данный

Из книги Все о предпусковых обогревателях и отопителях автора Найман Владимир

Изготовление зарядного устройства (ЗУ) для NiCd аккумуляторов Зарядные устройства для NiCd аккумуляторов достаточно дешевы. Обычно изготовление внешнего зарядного устройства под популярные размеры аккумуляторов, таких как ААА, АА, C и D, не отнимет много сил и времени. Умение

Из книги Цифровая стеганография автора Грибунин Вадим Геннадьевич

Установка тепловых аккумуляторов В установке ТА на любую автомашину можно выделить следующие группы операций: определение места расположения ТА; монтаж гидравлической схемы; подключение блока управления; прокачка системы охлаждения; проверка и

Из книги Источники питания и зарядные устройства автора

7.4. Методы маскирования ЦВЗ К методам, использующим не только особенности строения аудиосигналов, но и системы слуха человека относится также метод маскирования сигнала. Маскированием называется эффект, при котором слабое, но слышимое звуковое колебание становится

Из книги Гидроакумуляторы и расширительные баки автора Беликов Сергей Евгеньевич

Типы аккумуляторов и методы их заряда Никель-кадмиевые аккумуляторы Технология изготовления щелочных никелевых аккумуляторов была предложена в 1899, когда Waldmar Jungner изобрел первый никель-кадмиевый аккумулятор (NiCd). Используемые в них материалы были в то время дороги, и их

Из книги Материаловедение. Шпаргалка автора Буслаева Елена Михайловна

Заряд литий-ионных (Li-ion) аккумуляторов Зарядное устройство для Li-ion аккумуляторов подобно зарядному устройству для свинцово-кислотных аккумуляторов (SLA) в части ограничения напряжения на аккумуляторе. Основные различия между ними заключаются в том, что у зарядного

Из книги Очень общая метрология автора Ашкинази Леонид Александрович

Хранение аккумуляторов Аккумуляторы относятся к категории “скоропортящихся продуктов”, начинающих терять свое качество сразу же после изготовления. Хотя степень деградации для некоторых типов аккумуляторов достаточно низка, все же не рекомендуется хранить их в

Из книги автора

О восстановлении аккумуляторов Процент восстановленных аккумуляторов при использовании контролируемых циклов разряда / заряда зависит от типа электрохимической системы, количества уже отработанных циклов, метода обслуживания и возраста аккумулятора.Ni-Cd. Наилучшие

Из книги автора

4.2. Подбор баков-аккумуляторов Есть житейское правило: «Чем больше объем бака, тем лучше». В то же время существуют методики точного подбора и расчета объема баков на основе европейских норм UNI 9182.Метод используется для расчета объема гидроаккумулятора на основании

Из книги автора

49. Химический состав, методы получения порошков, свойства и методы их контроля Порошковые материалы – материалы, получаемые в результате прессования металлических порошков в изделия необходимой формы и размеров и последующего спекания сформованных изделий в вакууме

Из книги автора

Приборы и методы Какая первая ассоциация при слове «измерить»? У меня - вольтметр, у некоторых - метр. То есть «сантиметр». Нет, не тот, которых сто этих в одном том, а который по словарям sartorial meter, metre measure ruler или metre-stick - это который «метр», а tape measure, metre tape measure, tape-line - это