Питание

Схемы ограничения тока заряда конденсатора. Ограничение бросков тока при включении нагрузки низкой и средней мощности

Схема предназначена для защиты от броска тока заряда при включении незаряженного конденсатора в бортовую сеть. Кто не пробовал включать незаряженный фарадник в сеть без ограничивающего резистора - лучше не надо... Как минимум, обгорят контакты.

При включении разряженной емкости в сеть емкость С1 разряжена, Т1 (n-МОП ключ с низким сопротивлением канала) закрыт. Емкость С2 (тот самый фарадник) заряжается через низкоомный R5. Т2 открывается практически мгновенно, шунтирую на землю C1 и затвор Т1. Когда потенциал отрицательной клеммы С2 опустится ниже 1В (зарядка до Uакб - 1В), Т2 закрывается, С1 плавно заряжается до примерно 9/10 Uакб, открывая T1. Постоянная времени R2C1 достаточно велика, так что скачок тока Т1 (дозарядка С2 на +1В до Uaкб) не превышает допустимого для Т1.

В дальнейшем отрицательная клемма С2 постоянно замкнута на землю через Т1, НЕЗАВИСИМО ОТ НАПРАВЛЕНИЯ ТОКА Т1 (как в прямом - от стока к истоку, так и в обратном направлении). Ничего страшного в "переворачивании" ОТКРЫТОГО МДП транзистора нет. При выборе достаточно хорошо проводящего транзистора весь обратный ток потечет через канал, а встроенный обратный диод не откроется, так как падение напряжения на канале в разы меньше требуемых для открытия 0.5-0.8 В. Кстати, есть целый класс МДП приборов (т.н. FETKY), предназначенных именно для работы в обратном направлении (синхронные выпрямители), у них встроенный диод зашунтирован дополнительным силовым диодом Шоттки.

Расчет: для транзистора IRF1010 (Rds=0.012 Ом) падение напряжения 0.5 Ом будет достигнуто только при токе канала 40А (P=20Вт). Для четырех таких транзисторов в параллель и том же токе разряда 40А - на каждом транзисторе будет рассеиваться 0.012*(40/4)^2 = 1.2 Вт, т.е. радиаторы им не потребуются (тем более что 1.2Вт будет рассеиваться только при перепадах тока потребления но не постоянно).

При плотном монтаже (у Вас много места для лишнего радиатора?) - целесообразно параллелить малогабаритные (корпус TO251, DIP4) транзисторы, вообще не предусматривающие радиаторы, исходя из соотношения ток(мощность) потребления усилителя - Rds - предельная рассеиваемая мощность. Поскольку Pds max обычно равна 1Вт (800 мВт для DIP4), количество n транзисторов (c Rds каждого) для усилителя с выходной мощность Pвых должно быть не менее n > 1/6 * Pвых * sqrt(Rds) при 12В питания (размерности в формуле я опустил). Фактически, с учетом кратковременности импульсов тока, n можно смело уменьшить вдвое по сравнению с данной формулой.

Резистор заряда R5 подбирается из компромисса тепловой мощности и времени заряда. При указанных 22 Ома - время заряда около 1 минуты при рассеиваемой мощности 7 Вт. Можно вместо R5 включить 12В лампочку, скажем, от поворотника. Резисторы R1, R3 - перестраховочные (разряжают емкости при отключении из сети).

Для индикации включения подключаем дополнительный инвертор (уменьшая R2). Внимание! Схема работоспособна при использовании npn транзисторов T2, T3 с h21э > 200 (КТ3102). В зависимости от яркости свечения светодиода, R1 выбираем в диапазоне 200 Ом - 1кОм.

А вот вариант схемы, в котором ключ затвора управляется сигналом REMOTE (транзисторное И). При неподключенном или выключенном REMOTE ключевой транзистор гарантированно закрыт. Светодиоды D3-D4 индицируют зарядку С1, D5-D6 - открытое состояние ключа.

Точная индикация порога напряжения сети проще всего обеспечивается ИС TL431 (КР142ЕН19) в типовом режиме компаратора напряжения (с соответсвующим делителем во входной цепи и токоограничивающем R в цепи катода).

Потери схемы во многом зависят от монтажа. Необходимо обеспечить минимальное сопротивление (и соответствующие току толщины проводов) в силовой цепи (клемма+ / С2 / T1/ клемма-). В любительской практике, думаю, делать внешние клеммы нецелесообразно - лучше сразу распаять короткие провода AWG8, которыми схема привязывается к клеммнику усилителя.

Ограничение зарядного тока конденсатора сетевого выпрямителя ИИП

Одна из важных проблем в сетевых импульсных источниках питания - ограничение тока зарядки сглаживающего конденсатора большой емкости, установленного на выходе сетевого выпрямителя. Его максимальное значение, определяемое сопротивлением зарядной цепи, фиксировано для каждого конкретного устройства, но во всех случаях весьма значительно, что может привести не только к перегоранию предохранителей, но и к выходу из строя элементов входных цепей. Автор статьи предлагает простой способ решения указанной проблемы.

Решению задачи ограничения пускового тока посвящено немало работ, в которых описаны устройства так называемого "мягкого" включения . Один из широко применяемых способов - использование зарядной цепи с нелинейной характеристикой. Обычно конденсатор заряжают через токоограничивающий резистор до рабочего напряжения, а затем этот резистор замыкают электронным ключом. Наиболее простым получается подобное устройство при использовании тринистора .

На рисунке показана типовая схема входного узла импульсного источника питания. Назначение элементов, напрямую не относящихся к предлагаемому устройству (входной фильтр, сетевой выпрямитель), в статье не описано, поскольку эта часть выполнена стандартно .

Сглаживающий конденсатор С7 заряжается от сетевого выпрямителя VD1 через токоограничивающий резистор R2, параллельно которому включен тринистор VS1. Резистор должен отвечать двум требованиям: во-первых, его сопротивление должно быть достаточным для того, чтобы ток через предохранитель за время зарядки не привел к его перегоранию, и во-вторых, мощность рассеяния резистора должна быть такой, чтобы он не вышел из строя до полной зарядки конденсатора С7.

Первому условию удовлетворяет резистор сопротивлением 150 Ом. Максимальный ток зарядки при этом примерно равен 2 А. Экспериментально установлено, что два резистора сопротивлением 300 Ом и мощностью 2 Вт каждый, включенных параллельно, отвечают второму требованию.

Емкость конденсатора С7 660 мкФ выбрана из условия, что амплитуда пульсаций выпрямленного напряжения при максимальной мощности нагрузки 200 Вт не должна превышать 10 В. Номиналы элементов С6 и R3 рассчитывают следующим образом. Конденсатор С7 зарядится через резистор R2 практически полностью (95 % от максимального напряжения) за время t=3R2·C7=3·150·660·10-6 -0,3 с. В этот момент должен открыться тринистор VS1.

Тринистор включится, когда напряжение на его управляющем электроде достигнет 1 В, значит, конденсатор С6 должен за 0,3 с зарядиться до этого значения. Строго говоря, напряжение на конденсаторе растет нелинейно, но поскольку значение 1 В составляет около 0,3 % от максимально возможного (примерно 310 В), то этот начальный участок допустимо считать практически линейным, поэтому емкость конденсатора С6 рассчитывают по простой формуле: C=Q/U, где Q=l·t - заряд конденсатора; I - ток зарядки.

Определим ток зарядки. Он должен быть несколько больше тока управляющего электрода, при котором включается тринистор VS1. Выбираем тринистор КУ202Р1, аналогичный известному КУ202Н, но с меньшим током включения. Этот параметр в партии из 20 тринисторов находился в пределах от 1,5 до 11 мА, причем у подавляющего большинства его значение не превышало 5 мА. Для дальнейших экспериментов выбран прибор с током включения 3 мА. Выбираем сопротивление резистора R3 равным 45 кОм. Тогда ток зарядки конденсатора С6 равен 310 В/45 кОм = 6,9 мА, что в 2,3 раза больше тока включения тринистора.

Вычислим емкость конденсатора С6: С=6,9·10-3·0,3/1-2000 мкФ. В источнике питания использован меньший по габаритам конденсатор емкостью 1000 мкФ на напряжение 10 В. Время его зарядки уменьшилось вдвое, примерно до 0,15 с. Пришлось уменьшить постоянную времени цепи зарядки конденсатора С7 - сопротивление резистора R2 уменьшено до 65 Ом. При этом максимальный зарядный ток в момент включения равен 310 В/65 Ом = 4,8 А, но уже через время 0,15 с ток уменьшится приблизительно до 0,2 А.

Известно, что плавкий предохранитель обладает значительной инерционностью и может без повреждения пропускать короткие импульсы, намного превышающие его номинальный ток. В нашем случае среднее значение за время 0,15 с составляет 2,2 А и предохранитель переносит его "безболезненно". Два резистора сопротивлением 130 Ом и мощностью 2 Вт каждый, включенных параллельно, также справляются с такой нагрузкой. За время зарядки конденсатора С6 до напряжения 1 В (0,15 с) конденсатор С7 зарядится на 97 % от максимума.

Таким образом, все условия безопасной работы соблюдены. Длительная эксплуатация импульсного источника питания показала высокую надежность работы описанного узла. Следует отметить, что плавное в течение 0,15 с повышение напряжения на сглаживающем конденсаторе С7 благоприятно сказывается на работе как преобразователя напряжения, так и нагрузки.

Резистор R1 служит для быстрой разрядки конденсатора С6 при отключении блока питания от сети. Без него этот конденсатор разряжался бы значительно дольше. Если в этом случае быстро включить блок питания после его выключения, то тринистор VS1 может оказаться еще открытым и предохранитель сгорит.

Резистор R3 состоит из трех, включенных последовательно, сопротивлением 15 кОм и мощностью 1 Вт каждый. На них рассеивается мощность около 2 Вт. Резистор R2 - два параллельно включенных МЛТ-2 сопротивлением по 130 Ом, а конденсатор С7 - два, емкостью по 330 мкФ на номинальное напряжение 350 В, соединенных параллельно. Выключатель SA1 - тумблер Т2 или кнопочный переключатель ПкН41-1. Последний предпочтительнее, поскольку позволяет отключать от сети оба проводника. Тринистор КУ202Р1 снабжен алюминиевым теплоотводом размерами 15x15x1 мм.

Литература

  1. Источники вторичного электропитания. Справочное пособие. - М.: Радио и связь, 1983.
  2. . Эраносян С. А. Сетевые блоки питания с высокочастотными преобразователями. - Л.: Энергоатомиздат, 1991.
  3. 3. Фролов А. Ограничение тока зарядки конденсатора в сетевом выпрямителе. - Радио, 2001, № 12, с. 38, 39, 42.
  4. 4. Мкртчян Ж. А. Электропитание электронно-вычислительных машин. - М.: Энергия, 1980.
  5. 5. Интегральные микросхемы зарубежной бытовой видеоаппаратуры. Справочное пособие. - С.-Пб,: Лань Виктория, 1996.

Классный фейерверк у вас заложен. Стоит паре-тройке светодиодов пробиться, напряжение на LM317 скакнет до запредельного и будет классный бабах.

1000 микрофарад на 450v = 80 Джоулей. В случае проблем, конденсатор жухнет так, что мало не покажется. А проблемы будут, так как вы сунули конденсатор совсем без запаса в среду, где и 1kV можно в импульсе на вход поймать.

Совет - сделайте нормальный импульсный драйвер. А не этот кружок "умелые руки" без гальванической развязки и фильтров.

Даже если условно принять эту схему за верную, нужно наставить вокруг LM317 керамических конденсаторов, чтобы не звенела.

И да, токоограничение транзистором делается иначе - в вашей схеме он просто рванет потому как изначально к переходу Э-К будет приложена сеть.

А к переходу ЭБ ваш делитель приложит 236 вольт, что также приведет ко взрыву транзистора.

После нескольких уточнений наконец выяснилось, чего же вы хотите добиться: общий источник питания для нескольких цепей последовательно включённых светодиодов. Главной проблемой вы сочли узел плавного заряда фильтрового конденсатора. На мой взгляд, в такой схеме есть несколько куда более критичных мест. Но сначала по теме вопроса.

1000 мкф - это значение подходяще для тока нагрузки 0,5...3 ампера, а не десятки миллиампер (там достаточно 22...50 мкф). Транзистор можно ставить, если надо сделать плавное, на 4...20 секунд, нарастание яркости - но ведь у вас несколько гирлянд! Неужели они должны во всей квартире стартовать одновременно? Да и насчёт выключателей - вы хотите вместо штатных, коммутирующих цепь ~220 вольт, коммутировать цепь =310 вольт, ставя выключатель между конденсатором и гирляндой? Такое решение выглядит хоть как-то оправданным для "умного дома" (да и то не всё в нём понятно), но в обычной квартире так делать смысла нет. В ней правильнее установить для каждой гирлянды свой отдельный БП - и тогда куда выгоднее применять обычные супердешёвые (и куда более надёжные!) ленты с параллельными светодиодами на 12 вольт, а не с самодельными последовательными, в которых выгорание одного диода полностью лишает вас света.
Другое назначение узла плавного заряда - защита выпрямительных диодов от многократной перегрузки в момент включения, когда конденсатор полностью разряжен. Но эта задача полностью решается куда более простым методом - вместо T1 и R1, R3 надо вставить терморезистор сопротивлением в несколько десятков ом, снижающимся при прогреве до 0,5...3 ом, так сделано в сотнях миллионов компьютерных БП, надёжно работающих годами при примерно таком же токе нагрузки, как и у вас. Добыть такой термистор можно из любого дохлого компьютерного БП.

И наконец о том, чего в вашем вопросе нет, а оно бросается в глаза - о стабилизаторе тока на LM317, поглощающем излишек сетевого напряжения. Дело в том, что такой стаб работоспособен только в диапазоне от 3 до 40 вольт. Допуск на сетевое напряжение в городской исправной сети 10%, т.е. от 198 до 242 вольт. Значит, если вы рассчитали стаб на нижний предел (а так обычно и делается), то на верхнем пределе напряжение на стабе выйдет за допустимые 40 вольт. Если же вы настроите его на верх диапазона (т.е. на 242), то на нижнем пределе напряжение на стабе понизится ниже 3 вольт, и он перестанет стабилизировать ток. И я уж умолчу, что будет с этой схемой в сельской местности, где колебания сетевого напряжения куда шире. Так что такая схема будет нормально работать только при стабильном напряжении сети - но при стабильной сети стабилизатор не нужен, его прекрасно заменит простой резистор.

Схемы источников питания

М. ДОРОФЕЕВ, г. Москва
Радио, 2002 год, № 10

Одна из важных проблем в сетевых импульсных источниках питания - ограничение тока зарядки сглаживающего конденсатора большой емкости, установленного на выходе сетевого выпрямителя. Его максимальное значение, определяемое сопротивлением зарядной цепи, фиксировано для каждого конкретного устройства, но во всех случаях весьма значительно, что может привести не только к перегоранию предохранителей, но и к выходу из строя элементов входных цепей. Автор статьи предлагает простой способ решения указанной проблемы.

Решению задачи ограничения пускового тока посвящено немало работ, в которых описаны устройства так называемого "мягкого" включения . Один из широко применяемых способов - использование зарядной цепи с нелинейной характеристикой. Обычно конденсатор заряжают через токоограничивающий резистор до рабочего напряжения, а затем этот резистор замыкают электронным ключом. Наиболее простым получается подобное устройство при использовании тринистора . На рисунке показана типовая схема входного узла импульсного источника питания. Назначение элементов, напрямую не относящихся к предлагаемому устройству (входной фильтр, сетевой выпрямитель), в статье не описано, поскольку эта часть выполнена стандартно .

Сглаживающий конденсатор С7 заряжается от сетевого выпрямителя VD1 через токоограничивающий резистор R2, параллельно которому включен тринистор VS1. Резистор должен отвечать двум требованиям: во-первых, его сопротивление должно быть достаточным для того, чтобы ток через предохранитель за время зарядки не привел к его перегоранию, и во-вторых, мощность рассеяния резистора должна быть такой, чтобы он не вышел из строя до полной зарядки конденсатора С7.

Первому условию удовлетворяет резистор сопротивлением 150 Ом. Максимальный ток зарядки при этом примерно равен 2 А. Экспериментально установлено, что два резистора сопротивлением 300 Ом и мощностью 2 Вт каждый, включенных параллельно, отвечают второму требованию.

Емкость конденсатора С7 660 мкФ выбрана из условия, что амплитуда пульсаций выпрямленного напряжения при максимальной мощности нагрузки 200 Вт не должна превышать 10 В. Номиналы элементов С6 и R3 рассчитывают следующим образом. Конденсатор С7 зарядится через резистор R2 практически полностью (95 % от максимального напряжения) за время t=3R2 C7=3 150 660 10 -6 ≈0,3 с. В этот момент должен открыться тринистор VS1.

Тринистор включится, когда напряжение на его управляющем электроде достигнет 1 В, значит, конденсатор С6 должен за 0,3 с зарядиться до этого значения. Строго говоря, напряжение на конденсаторе растет нелинейно, но поскольку значение 1 В составляет около 0,3 % от максимально возможного (примерно 310 В), то этот начальный участок допустимо считать практически линейным, поэтому емкость конденсатора С6 рассчитывают по простой формуле: C=Q/U, где Q=l t - заряд конденсатора; I - ток зарядки.

Определим ток зарядки. Он должен быть несколько больше тока управляющего электрода, при котором включается тринистор VS1. Выбираем тринистор КУ202Р1, аналогичный известному КУ202Н, но с меньшим током включения. Этот параметр в партии из 20 тринисторов находился в пределах от 1,5 до 11 мА, причем у подавляющего большинства его значение не превышало 5 мА. Для дальнейших экспериментов выбран прибор с током включения 3 мА. Выбираем сопротивление резистора R3 равным 45 кОм. Тогда ток зарядки конденсатора С6 равен 310 В/45 кОм = 6,9 мА, что в 2,3 раза больше тока включения тринистора.

Вычислим емкость конденсатора С6: С=6,9 10 -3 0,3/1≈2000 мкФ. В источнике питания использован меньший по габаритам конденсатор емкостью 1000 мкФ на напряжение 10 В. Время его зарядки уменьшилось вдвое, примерно до 0,15 с. Пришлось уменьшить постоянную времени цепи зарядки конденсатора С7 - сопротивление резистора R2 уменьшено до 65 Ом. При этом максимальный зарядный ток в момент включения равен 310 В/65 Ом = 4,8 А, но уже через время 0,15 с ток уменьшится приблизительно до 0,2 А.

Известно, что плавкий предохранитель обладает значительной инерционностью и может без повреждения пропускать короткие импульсы, намного превышающие его номинальный ток. В нашем случае среднее значение за время 0,15 с составляет 2,2 А и предохранитель переносит его "безболезненно". Два резистора сопротивлением 130 Ом и мощностью 2 Вт каждый, включенных параллельно, также справляются с такой нагрузкой. За время зарядки конденсатора С6 до напряжения 1 В (0,15 с) конденсатор С7 зарядится на 97 % от максимума.

Таким образом, все условия безопасной работы соблюдены. Длительная эксплуатация импульсного источника питания показала высокую надежность работы описанного узла. Следует отметить, что плавное в течение 0,15 с повышение напряжения на сглаживающем конденсаторе С7 благоприятно сказывается на работе как преобразователя напряжения, так и нагрузки.

Резистор R1 служит для быстрой разрядки конденсатора С6 при отключении блока питания от сети. Без него этот конденсатор разряжался бы значительно дольше. Если в этом случае быстро включить блок питания после его выключения, то тринистор VS1 может оказаться еще открытым и предохранитель сгорит.

Резистор R3 состоит из трех, включенных последовательно, сопротивлением 15 кОм и мощностью 1 Вт каждый. На них рассеивается мощность около 2 Вт. Резистор R2 - два параллельно включенных МЛТ-2 сопротивлением по 130 Ом, а конденсатор С7 - два, емкостью по 330 мк на номинальное напряжение 350 В, соединенных параллельно. Выключатель SA1 - тумблер Т2 или кнопочный переключатель ПКН 41-1. Последний предпочтительнее, поскольку позволяет отключать от сети оба проводника. Тринистор КУ202Р1 снабжен алюминиевым теплоотводом размерами 15x15x1 мм.

ЛИТЕРАТУРА
1. Источники вторичного электропитания. Справочное пособие. - М.: Радио и связь, 1983.
2. Эраносян С. А. Сетевые блоки питания с высокочастотными преобразователями. - Л.: Энергоатомиздат, 1991.
3. Фролов А. Ограничение тока зарядки конденсатора в сетевом выпрямителе. - Радио, 2001, № 12, с. 38, 39, 42.
4. Мкртчян Ж. А. Электропитание электронно-вычислительных машин. - М.: Энергия, 1980.
5. Интегральные микросхемы зарубежной бытовой видеоаппаратуры. Справочное пособие. - С.-Пб,: Лань Виктория, 1996.

JB Castro-Miguens, Madrid

В момент включения импульсного источника питания, например, блока питания компьютера, сглаживающий конденсатор выпрямителя полностью разряжен. Бросок зарядного тока, в особенности в том случае, когда емкость конденсатора велика, может привести к срабатыванию автоматов защиты сети, или, даже, к выходу из строя выпрямительных диодов.

Несмотря на то, что эквивалентное последовательное сопротивление конденсатора, а также сопротивление и индуктивность проводов уменьшают бросок тока, пиковые значения могут достигать десятков ампер. Эти броски приходится принимать во внимание при выборе диодов выпрямителя, но наиболее заметно их влияние на срок службы конденсатора. Схема, позволяющая ограничивать выбросы тока при включении, показана на Рисунке 1.

Если в момент включения мгновенное значение выпрямленного переменного напряжения сети больше 14 В, MOSFET транзистор Q 1 будет включен, вследствие чего IGBT транзистор Q 2 выключен, и конденсатор не заряжается.

Если же выпрямленное напряжение меньше, чем напряжение на конденсаторе плюс 14 В (V 1 = V IN − V OUT ≤ 14 В), Q1 выключен, а Q 2 включается через резистор R 3 , подключая конденсатор и нагрузку (R LOAD) к выпрямителю. Соответственно, Q 2 остается включенным, а Q 1 перестает оказывать какое-либо влияние на работу схемы.

В стационарном состоянии, когда напряжение на конденсаторе сравняется с выпрямленным переменным напряжением, Q 1 выключен, а Q 2 включен, и заряду конденсатора ничто не препятствует.

Ограничитель тока позволяет дополнить схему защитой от перенапряжения. Если выпрямленное выходное напряжение превысит 380 В, напряжение между выходом опорного напряжения и анодом микросхемы IC 1 будет больше ее внутреннего опорного напряжения 2.495 В, вследствие чего, напряжение анод-катод упадет примерно до 2 В. Ток резистора R 3 потечет в катод, и Q 2 закроется.

Когда выпрямленное сетевое напряжение меньше 380 В, катодный ток TL431 практически отсутствует. Вследствие этого, Q2 включается через R3 и подключает конденсатор и R LOAD к двухполупериодному выпрямителю (при условии V 1 = V IN − V OUT ≤ 14 В).

Мощность, рассеиваемая компонентами схемы, очень незначительна. При входном напряжении 230 В с.к.з. и мощности нагрузки до 500 Вт в качестве Q 2 можно использовать GP10NC60KD .

  • Фактическа схема обеспечивает подключение фильтрующих конденсаторов при переходе питающего напряжения через ноль. Не проще-ли для этого использовать оптосимистор (оптореле) с функцией с фонкцией включения при ноле напряжения. При большой ёмкости конденсаторов фильта ни эта схема, ни оптореле не спасут от броска тока.
  • Схема, конечно, хорошая и похожа на один из вариантов dv/dt ограничителей, описанных в "AN1542 Active Inrush Current Limiting Using MOSFET"s". Также полезен аппноут "AN4606 Inrush-current limiter circuits (ICL) with Triacs and Thyristors". В самой схеме куда полезнее была бы не защита от перенапряжения, а защита от короткого замыкания в нагрузке. К тому же, есть такие типы нагрузок, которые нельзя просто так отключить от сети. Т.е. скачёк сетевого напряжения бывает менее страшен, чем его моментальное пропадание. Пожалуй, проблема зарядки входных емкостей характерна для всех SMPS мощностью от 200Вт. Большой цветник решений можно увидеть в схемах сварочных инверторов, частотников и другом технологическом оборудовании, где так или иначе присутствует звено постоянного тока большой мощности. Сложность схем ограничителей (почему-то всегда пишут "схем плавного пуска") определяется бюджетом и фантазией разработчиков. Небольшая иерархия: "народные" средства - это резистор или дроссель, для небольших мощностей термистор; вслед за этим - схемы, подобные описанной в статье (на тиристоре или транзисторе); затем - управляемые выпрямители; ну а на самой верхушке по моему мнению - корректоры коэффициента мощности (также обобщающее название для полностью управляемых выпрямителей или неизолированных DC/DC преобразователей). И относительно приведённой схемы. Передо мной лежит блок питания, на входе которого стоит 4000мкФ*450В. Ограничитель - 10Вт резистор, который шунтируется мощным 60-амперным пускателем. Время зарядки емкостей около 12 секунд. Оно классически задаётся RC-цепью в базе транзистора, который коммутирует обмотку маломощного реле, а то свою очередь включает пускатель. Как только резистор шунтирован, в схему управления через оптрон подаётся сигнал о состоянии выпрямителя "Готово". Поставив тиристор или IGBT согласно описанному решению (с большим запасом, т.к. ток несинусоидален) несложно будет организовать схему управления. В случае тиристора использовав оптимальный вариант - при переходе сети через 0, как писал lllll. Но вот незадача: ток потребления из сети при полной нагрузке около 30Ампер. А это означает, что в схему добавится "нагреватель", мощностью 50-100Вт. Речь, конечно, не об экономии электроэнергии:-). Но невольно задумаешься - так ли уж плох электромеханический "плавный пуск".
  • Схема из цикла, "когда нечем заняться, то...". Для низкой мощности тема не актуальна. Ни разу не видел ограничителей, но как показывает практика ничего из строя не выходит и автоматы не срабатывают. Для средней и большой мощности - устарело, сейчас нормами требуют уже не ограничители тока, а корректоры коэффициента мощности. В случае использования конденсаторов большой ёмкости (например в УНЧ), обычно используют плавную зарядку через токоограничительный резистор, который через некоторое время после включения закорачивается.
  • а это разве не ограничитель бросков тока для нагрузок средней мошности? AMC ваш пост из цикла "когда нечего написать а руки чешутся..."