Коробка передач

Двигатели внутреннего сгорания бывают. Принцип работы двигателя внутреннего сгорания

Двигатель внутреннего сгорания, или ДВС – это наиболее распространённый тип двигателя, который можно встретить на автомобилях. Невзирая на тот факт, что двигатель внутреннего сгорания в современных автомобилях состоит из множества частей, его принцип работы предельно прост. Давайте подробнее рассмотрим, что же такое ДВС, и как он функционирует в автомобиле.

ДВС что это?

Двигатель внутреннего сгорания – это вид теплового двигателя, в котором преобразовывается часть химической энергии, получаемой при сгорании топлива, в механическую, приводящую механизмы в движение.

ДВС разделяются на категории по рабочим циклам: двух- и четырёхтактные. Также их различают по способу приготовления топливно-воздушной смеси: с внешним (инжекторы и карбюраторы) и внутренним (дизельные агрегаты) смесеобразованием. В зависимости от того, как в двигателях преобразовывается энергия, их разделяют на поршневые, реактивные, турбинные и комбинированные.

Основные механизмы двигателя внутреннего сгорания

Двигатель внутреннего сгорания состоит из огромного количества элементов. Но есть основные, которые характеризуют его производительность. Давайте рассмотрим строение ДВС и основных его механизмов.

1. Цилиндр – это самая важная часть силового агрегата. Автомобильные двигатели, как правило, имеют четыре и более цилиндров, вплоть до шестнадцати на серийных суперкарах. Расположение цилиндров в таких двигателях может находиться в одном из трёх порядков: линейно, V-образно и оппозитно.


2. Свеча зажигания генерирует искру, которая воспламеняет топливно-воздушную смесь. Благодаря этому и происходит процесс сгорания. Чтобы двигатель работал «как часы», искра должна подаваться точно в положенное время.

3. Клапаны впуска и выпуска также функционируют только в определённые моменты. Один открывается, когда нужно впустить очередную порцию топлива, другой, когда нужно выпустить отработанные газы. Оба клапана крепко закрыты, когда в двигателе происходят такты сжатия и сгорания. Это обеспечивает необходимую полную герметичность.

4. Поршень представляет собой металлическую деталь, которая имеет форму цилиндра. Движение поршня осуществляется вверх-вниз внутри цилиндра.


5. Поршневые кольца служат уплотнителями скольжения внешней кромки поршня и внутренней поверхности цилиндра. Их использование обусловлено двумя целями:

Они не дают попадать горючей смеси в картер ДВС из камеры сгорания в моменты сжатия и рабочего такта.

Они не дают попасть маслу из картера в камеру сгорания, ведь там оно может воспламениться. Многие автомобили, которые сжигают масло, оборудованы старыми двигателями, и их поршневые кольца уже не обеспечивают должного уплотнения.

6. Шатун служит соединительным элементом между поршнем и коленчатым валом.

7. Коленчатый вал преобразует поступательные движения поршней во вращательные.


8. Картер располагается вокруг коленчатого вала. В его нижней части (поддоне) собирается определённое количество масла.

Принцип работы двигателя внутреннего сгорания

В предыдущих разделах мы рассмотрели назначение и устройство ДВС. Как вы уже поняли, каждый такой двигатель имеет поршни и цилиндры, внутри которых тепловая энергия преобразуется в механическую. Это, в свою очередь, заставляет автомобиль двигаться. Данный процесс повторяется с поразительной частотой – по несколько раз в секунду. Благодаря этому, коленчатый вал, который выходит из двигателя, непрерывно вращается.

Рассмотрим подробнее принцип работы двигателя внутреннего сгорания. Смесь топлива и воздуха попадает в камеру сгорания через впускной клапан. Далее она компрессируется и воспламеняется искрой от свечи зажигания. Когда топливо сгорает, в камере образуется очень высокая температура, которая приводит к появлению избыточного давления в цилиндре. Это заставляет двигаться поршень к «мёртвой точке». Он таким образом совершает один рабочий ход. Когда поршень двигается вниз, он посредством шатуна вращает коленчатый вал. Затем, двигаясь от нижней мёртвой точки к верхней, выталкивает отработанный материал в виде газов через клапан выпуска далее в выхлопную систему машины.

Такт – это процесс, происходящий в цилиндре за один ход поршня. Совокупность таких тактов, которые повторяются в строгой последовательности и за определённый период – это рабочий цикл ДВС.

Впуск

Впускной такт является первым. Он начинается с верхней мёртвой точки поршня. Он движется вниз, всасывая в цилиндр смесь из топлива и воздуха. Этот такт происходит, когда клапан впуска открыт. Кстати, существуют двигатели, у которых присутствует несколько впускных клапанов. Их технические характеристики существенно влияют на мощность ДВС. В некоторых двигателях можно регулировать время нахождения впускных клапанов открытыми. Это регулируется нажатием на педаль газа. Благодаря такой системе количество всасываемого топлива увеличивается, а после его возгорания существенно возрастает и мощность силового агрегата. Автомобиль в таком случае может существенно ускориться.

Сжатие

Вторым рабочим тактом двигателя внутреннего сгорания является сжатие. По достижении поршнем нижней мертвой точки, он поднимается вверх. За счёт этого попавшая в цилиндр смесь во время первого такта сжимается. Топливно-воздушная смесь сжимается до размеров камеры сгорания. Это то самое свободное место между верхними частями цилиндра и поршня, который находится в своей верхней мертвой точке. Клапаны в момент этого такта плотно закрыты. Чем герметичнее образованное пространство, тем более качественное сжатие получается. Очень важно, какое состояние у поршня, его колец и цилиндра. Если где-то присутствуют зазоры, то о хорошем сжатии речи быть не может, а, следовательно, и мощность силового агрегата будет существенно ниже. По величине сжатия определяется то, насколько изношен силовой агрегат.

Рабочий ход

Этот третий по счёту такт начинается с верхней мёртвой точки. И такое название он получил не случайно. Именно во время этого такта в двигателе происходят те процессы, которые двигают автомобиль. В этом такте подключается система зажигания. Она отвечает за поджог воздушно-топливной смеси, сжатой в камере сгорания. Принцип работы ДВС в этом такте весьма прост – свеча системы дает искру. После возгорания топлива происходит микровзрыв. После этого оно резко увеличивается в объёме, заставляя поршень резко двигаться вниз. Клапаны в этом такте находятся в закрытом состоянии, как и в предыдущем.

Выпуск

Заключительный такт работы двигателя внутреннего сгорания – выпуск. После рабочего такта поршнем достигается нижняя мёртвая точка, а затем открывается выпускной клапан. После этого поршень движется вверх, и через этот клапан выбрасывает отработанные газы из цилиндра. Это процесс вентиляции. От того, насколько чётко работают клапан, зависит степень сжатия в камере сгорания, полное удаление отработанных материалов и нужное количество воздушно-топливной смеси.

После этого такта всё начинается заново. А за счёт чего вращается коленвал? Дело в том, что не вся энергия уходит на движение автомобиля. Часть энергии раскручивает маховик, который под действием инерционных сил раскручивает коленчатый вал ДВС, перемещая поршень в нерабочие такты.

А знаете ли вы? Дизельный двигатель тяжелее, чем бензиновый, из-за более высокого механического напряжения. Поэтому конструкторы используют более массивные элементы. Зато ресурс таких двигателей выше бензиновых аналогов. Кроме того, дизельные автомобили возгораются значительно реже бензиновых, так как дизель нелетучий.

Достоинства и недостатки

Мы с вами узнали, что представляет из себя двигатель внутреннего сгорания, а также каково его устройство и принцип работы. В заключение разберём его основные преимущества и недостатки.

Преимущества ДВС:

1. Возможность длительного передвижения на полном баке.

2. Небольшой вес и объём бака.

3. Автономность.

4. Универсальность.

5. Умеренная стоимость.

6. Компактные размеры.

7. Быстрый старт.

8. Возможность использования нескольких видов топлива.

Недостатки ДВС:

1. Слабый эксплуатационный КПД.

2. Сильная загрязняемость окружающей среды.

3. Обязательное наличие коробки переключения передач.

4. Отсутствие режима рекуперации энергии.

5. Большую часть времени работает с недогрузом.

6. Очень шумный.

7. Высокая скорость вращения коленчатого вала.

8. Небольшой ресурс.

Интересный факт! Самый маленький двигатель спроектирован в Кембридже. Его габариты составляют 5*15*3 мм, а его мощность 11,2 Вт. Частота вращения коленвала составляет 50 000 об/мин.

Двигатель внутреннего сгорания работает на основе расширения газов, которые нагреваются при движении поршня от верхней мертвой точки к нижней мертвой точке. Газы нагреваются от того, что в цилиндре сгорает топливо, которое перемешано с воздухом. Таким образом, температура давления и газа стремительно растет.

Известно, что поршневое давление является аналогичным атмосферному. В цилиндре, наоборот, давление является более высоким. Как раз из-за этого давления поршня понижается, что приводит к расширению газов, таким образом, совершается полезная работа.В соответствующем разделе нашего сайта вы сможете найти статью . Для выработки механической энергии цилиндр двигателя нужно постоянно снабжать воздухом, в который будет поступать через форсунку топливо и воздух через впускной клапан. Конечно, воздух может поступать вместе с топливом, например, через впускной клапан. Через него же выходят все продукты, получившиеся при сгорании. Все это происходит на основе газораспределения, ведь именно газ отвечает за открытие и закрытие клапанов.

Рабочий цикл двигателя

Нужно особенно выделить рабочий цикл двигателя, который представляет собой последовательные повторяющиеся процессы. Они происходят в каждом цилиндре. Кроме того, именно от них зависит переход тепловой энергии в механическую работу. Стоит отметить, что каждый тип транспорта работает по своему определенному типу. Например, рабочий цикл может совершаться за 2 хода поршня. В этом случае двигатель называют двухтактным. Что касается автомобилей, то большинство из них имеют четырехтактные двигатели, так как их цикл состоит из впуска, сжатия газа, расширения газа, или рабочего хода, и выпуска. Все эти четыре этапа играют большую роль в работе двигателя.

Впуск

На этом этапе выпускной клапан закрыт, а впускной, наоборот, открыт. На начальном этапе первый полуоборот делается коленчатым валом двигателя, что приводит к перемещению от верхней мертвой точки к нижней мертвой точке. После в цилиндре происходит разряжение, и в него попадает через впускной газопровод воздух вместе с бензином, что представляет собой горючую смесь, которая затем перемешивается с газами. Таким образом, двигатель начинает работать.

Сжатие

После того, как цилиндр полностью заполнился горючей смесью, поршень начинает постепенно перемещаться от верхней мертвой точки к нижней мертвой точке. Клапаны в этот момент еще закрыты. На этом этапе давление и температура рабочей смеси становится выше.

Рабочий ход, или расширение

В то время, как поршень продолжает перемещаться от верхней мертвой точки к нижней мертвой точке, после этапа сжатия электрическая искра воспламеняет рабочую смесь, которая в свою очередь моментально тухнет. Так, температура и давление газов, находящихся в цилиндре сразу повышается. При рабочем ходе совершается полезная работа. На этом этапе происходит открытие выпускного клапана, что приводит к понижению температуры и давления.

Выпуск

На четвертом полуобороте в поршне происходит перемещение от верхней мертвой точки к нижней мертвой точке. Так, через открытый выпускной клапан из цилиндра выходят все продукты сгорания, которые после поступают в атмосферный воздух.

Принцип работы 4-тактного дизеля

Впуск

Воздух поступает в цилиндр через впускной клапан, который открыт. Что касается движения от верхней мертвой точки к нижней мертвой точке, то оно образуется при помощи разряжения, которое идет вместе с воздухом из воздухоочистителя в цилиндр. На данном этапе давление и температура понижены.

Сжатие

На втором полуобороте впускной и выпускной клапаны являются закрытыми. От НМТ к ВМТ поршень продолжает двигаться и постепенно сжимать воздух, который недавно поступил в полость цилиндра. В соответствующем разделе нашего сайта вы сможете найти статью про . У дизельного варианта двигателя топливо воспламеняет в том случае, когда температура сжатого воздуха выше температуры топлива, которое может самовоспламениться. Дизельное топливо поступает при помощи топливного насоса и проходит форсунку.

Рабочий ход, или расширение

После процесса сжатия топливо начинает смешиваться с нагретым воздухом, таким образом, происходит воспламенение. На третьем полуобороте повышается давление и температура, в результате чего происходит сгорание. Затем после приближения поршня от верхней мертвой точки к нижней мертвой точке давление и температура значительно понижаются.

Выпуск

На данном заключительном этапе происходит выталкивание отработавших газов из цилиндра, которые через открытую выпускную трубу попадают в атмосферу. Температура и давление заметно понижаются. После этого рабочий цикл делает все то же самое.

Как работает двухтактный двигатель?

Двухтакный двигатель имеет другой принцип работы в отличие от четырехтактного. В этом случае горючая смесь и воздух попадают в цилиндр в начале хода сжатия. Кроме того, отработавшие газы выходят из цилиндра в конце хода расширения. Стоит отметить, что все процессы происходят без движения поршней, как это делается у четырехтактного двигателя. Для двухтактного двигателя характерен процесс, называющийся продувкой. То есть, в этом случае все продукты сгорания удаляются из цилиндра при помощи потока воздуха или горючей смеси. Двигатель такого типа обязательно оснащен продувочным насосом, компрессором.

Двухтактный карбюраторный двигатель с кривошипно-камерной продувкой отличается от предыдущего типа своеобразной работой. Стоит отметить, что двухтактный двигатель не имеет клапанов, так как их в этом плане заменяют поршни. Так, при движении поршень закрывает впуск и выпуск, а также продувочные окна. При помощи продувочных окон цилиндр взаимодействует с картером, или кривошипной камерой, а также впускным и выпускным трубопроводами. Что касается рабочего цикла, то двигателей этого типа выделяют два такта, как можно было догадаться уже из названия.

Сжатие

На этом этапе поршень двигается от нижней мертвой точки к верхней мертвой точке. При этом он частично закрывает продувочное и выпускное окна. Таким образом, в момент закрытия в цилиндре происходит сжатие бензина и воздуха. В этот момент происходит разряжение, которое приводит к поступлению горючей смеси из карбюратора в кривошипную камеру.

Рабочий ход

Что касается работы двухтактного дизельного двигателя, то здесь чуть иной принцип работы. В этом случае в цилиндр сначала попадает не горючая смесь, а воздух. После этого туда слегка распыляется топливо. Если частота вращения вала и размер цилиндра дизельного агрегата одинаковы, то, с одной стороны, мощность такого мотора будет превышать мощность четырехтактного. Однако такой результат не всегда прослеживается. Так, из-за плохого освобождения цилиндра от оставшихся газов и неполного использования поршня мощность двигателя не превышает 65% в лучшем случае.

Большинство водителей понятия не имеют, каким является устройство двигателя автомобиля. А знать это необходимо, ведь не зря при обучении во многих автошколах ученикам рассказывают принцип работы ДВС. Иметь представление о работе двигателя должен каждый водитель, ведь эти знания могут пригодиться в дороге.

Конечно, существуют разные типы и марки двигателей автомобилей, работа которых отличается между собой в мелочах (системы впрыскивания топлива, расположение цилиндров и т. д.). Однако основной принцип для всех типов ДВС остается неизменным.

Устройство двигателя автомобиля в теории

Устройство ДВС всегда уместно рассматривать на примере работы одного цилиндра. Хотя чаще всего легковые автомобили имеют 4, 6, 8 цилиндров. В любом случае, главная деталь мотора - это цилиндр. В нем располагается поршень, который может двигаться вверх-вниз. При этом существуют 2 границы его передвижения - верхняя и нижняя. Профессионалы их называют ВМТ и НМТ (верхняя и нижняя мертвые точки).

Сам поршень соединен с шатуном, а шатун - с коленчатым валом. При движении поршня вверх-вниз шатун передает нагрузку на коленчатый вал, и тот вращается. Нагрузки от вала передаются на колеса, в результате чего автомобиль начинает движение.

Но главная задача - заставить работать поршень, ведь именно он является главной движущей силой этого сложного механизма. Делается это с помощью бензина, дизельного топлива или газа. Капля топлива, воспламеняющаяся в камере сгорания, отбрасывает поршень с большой силой вниз, тем самым приводя его в движение. Затем поршень по инерции возвращается в верхнюю границу, где снова происходит взрыв бензина и такой цикл повторяется постоянно, пока водитель не заглушит мотор.

Так выглядит устройство двигателя автомобиля. Однако это лишь теория. Давайте рассмотрим более детально циклы работы мотора.

Четырехтактный цикл

Практически все двигатели работают по 4-тактному циклу:

  1. Впуск топлива.
  2. Сжатие топлива.
  3. Сгорание.
  4. Вывод отработанных газов за пределы камеры сгорания.

Схема

Ниже на рисунке показана типичная схема устройства двигателя автомобиля (одного цилиндра).

На этой схеме четко показаны основные элементы:

A - Распределительный вал.

B - Крышка клапанов.

C - Выпускной клапан, через который отводятся газы из камеры сгорания.

D - Выхлопное отверстие.

E - Головка цилиндра.

F - Полость для охлаждающей жидкости. Чаще всего там находится антифриз, который охлаждает нагревающийся корпус мотора.

G - Блок мотора.

H - Маслосборник.

I - Поддон, куда стекает все масло.

J - Свеча зажигания, образующая искру для поджога топливной смеси.

K - Впускной клапан, через который в камеру сгорания попадает топливная смесь.

L - Впускное отверстие.

M - Поршень, который движется вверх-вниз.

N - Шатун, соединенный с поршнем. Это основной элемент, который передает усилие на коленчатый вал и трансформирует линейное движение (вверх-вниз) во вращательное.

O - Подшипник шатуна.

P - Коленчатый вал. Он вращается за счет движения поршня.

Также стоит выделить такой элемент, как поршневые кольца (их еще называют маслосъемными кольцами). Их нет на рисунке, однако они являются важной составляющей системы двигателя автомобиля. Данные кольца огибают поршень и создают максимальное уплотнение между стенками цилиндра и поршня. Они предотвращают попадание топлива в масляный поддон и масла в камеру сгорания. Большинство старых двигателей автомобилей ВАЗ и даже моторы европейских производителей имеют изношенные кольца, которые не создают эффективное уплотнение между поршнем и цилиндром, из-за чего масло может попадать в камеру сгорания. В такой ситуации будет наблюдаться повышенный расход бензина и "жор" масла.

Это основные элементы конструкции, которые имеют место во всех двигателях внутреннего сгорания. На самом деле элементов намного больше, но тонкостей мы касаться не будем.

Как работает двигатель?

Начнем с начального положения поршня - он находится вверху. В данный момент впускное отверстие открывается клапаном, поршень начинает движение вниз и засасывает топливную смесь в цилиндр. При этом всего лишь небольшая капля бензина поступает в емкость цилиндра. Это первый такт работы.

Во время второго такта поршень достигает самой нижней точки, при этом впускное отверстие закрывается, поршень начинает движение вверх, в результате чего топливная смесь сжимается, так как ей в закрытой камере некуда деваться. При достижении поршнем максимальной верхней точки топливная смесь сжата до максимума.

Третий этап - это поджигание сжатой топливной смеси с помощью свечи, которая испускает искру. В результате горючий состав взрывается и толкает поршень с большой силой вниз.

На заключительном этапе деталь достигает нижней границы и по инерции возвращается к верхней точке. В это время открывается выпускной клапан, отработанная смесь в виде газа выходит из камеры сгорания и через выхлопную систему попадает на улицу. После этого цикл, начиная с первого этапа, повторяется снова и продолжается в течение всего времени, пока водитель не заглушит двигатель.

В результате взрыва бензина поршень движется вниз и толкает коленчатый вал. Тот раскручивается и передает нагрузки на колеса автомобиля. Именно так и выглядит устройство двигателя автомобиля.

Отличие в бензиновых моторах

Описанный выше способ является универсальным. По такому принципу построена работа практически всех бензиновых моторов. Дизельные двигатели отличаются тем, что там нет свеч - элемента, который поджигает топливо. Детонация дизельного топлива осуществляется благодаря сильному сжатию топливной смеси. То есть на третьем цикле поршень поднимается вверх, сильно сжимает топливную смесь, и та взрывается естественным образом под действием давления.

Альтернатива ДВС

Отметим, что в последнее время на рынке появляются электрокары - автомобили с электрическими двигателями. Там принцип работы мотора совершенно другой, т. к. источником энергии является не бензин, а электричество в аккумуляторных батареях. Но пока что автомобильный рынок принадлежит автомобилям с ДВС, а электрические двигатели не могут похвастаться высокой эффективностью.

Несколько слов в заключение

Такое устройство ДВС является практически совершенным. Но с каждым годом разрабатываются новые технологии, повышающие КПД работы мотора, осуществляется улучшение характеристик бензина. При правильном техническом обслуживании двигателя автомобиля он может работать десятилетиями. Некоторые успешные моторы японских и немецких концернов "пробегают" миллион километров и приходят в негодность исключительно из-за механического устаревания деталей и пар трения. Но многие двигатели даже после миллионного пробега успешно проходят капремонт и продолжают выполнять свое прямое предназначение.

С момента изобретения первого мотора, работающего за счет горения топливной смеси прошло уже больше ста пятидесяти лет. Человечество продвинулось в техническом прогрессе, однако заменить так и не удаётся. Этот тип силовой установки используется как привод на технике. За счет мотора работают мопеды, автомобили, трактора, и другие самоходные агрегаты.

За время эксплуатации, изобретено и применено к использованию больше десяти видов и типов моторов. Однако, принцип работы не поменялся. В сравнении с паровым агрегатом, который предшествовал установке, двигатель, преобразующий тепловую энергию сгорания в механическую работу, экономичней с большим коэффициентом полезного действия. Эти свойства, залог успеха мотора, который полтора века остаётся востребованным и пользуется популярностью.

Поршневой двигатель внутреннего сгорания в разрезе

Особенность работы

Особенность, делающая мотор не похожим на другие установки, заключается в том, что работа двигателя внутреннего сгорания сопровождается воспламенением топливной смеси непосредственно в камере. Само пространство, где происходит горение, внутри установки, это легло в основу названия классификации моторов. В процессе сложной экзотермической реакции, когда исходная рабочая смесь превращается в продукты сгорания с выделением тепла, выполняется преобразование в механическую работу. Работа за счет теплового расширения, движущая сила, без которой было бы не возможно существование установки. Принцип завязан на давлении, газов в пространстве цилиндра.

Виды моторов

В процессе технического прогресса разрабатывались и испытывались виды агрегатов, в которых горючее сжигалось во внутреннем пространстве, не все доказали свою целесообразность. Выделены распространенные типы двигателей внутреннего сгорания:

Поршневая установка.

Составная часть агрегата выполнена в виде блока с вмонтированными внутрь цилиндрическими полостями. Часть цилиндра служит для сжигания горючего. Посредством поршня, кривошипа и шатуна происходит трансформация энергии горения в энергию вращения вала. В зависимости от того, как готовится горючая смесь, агрегаты делят:

  • Карбюраторные. В таких установках, горючее готовится за счет карбюрации. Атмосферный воздух и топливо транспортируются в механизм в пропорции, после чего смешивается внутри установки. Готовая смесь подается в камеру и сжигается;
  • Инжектор. В установку рабочая смесь подаётся при помощи распылителя. Впрыск осуществляется в коллектор и контролируется электроникой. По коллектору горючее поступает в камеру, где поджигается свечой;
  • Дизель. Принцип коренным образом отличается от предыдущих оппонентов. Процесс протекает за счёт давления. В объём через распылитель впрыскивается порция топлива (солярка), температура воздуха выше температуры горения, горючее воспламеняется.

Поршневой мотор:


  • Роторно-поршневой мотор. Преобразование энергии расширения газов в механическую работу происходит за счет оборотов ротора. Ротор представляет собой деталь специального профиля, на которую давят газы, заставляя совершать вращательные движения. Траектория движения ротора по камере объёмного вытеснения сложная, образована эпитрохоидой. Ротор выполняет функции: поршня, распределителя газов, вала.

Роторно-поршневой мотор:


  • Газотурбинные моторы. Процесс выполняется за счёт преобразования тепла в работу. Непосредственное участие принимают лопатки ротора. Вращение деталей от потока газов передаётся на турбину.

Сегодня, поршневые моторы окончательно вытеснили остальные типы установок и заняли доминирующее положение в автомобильной отрасли. Процентное соотношение роторно-поршневых моторов мало, поскольку производством занимается только Mazda. К тому же выпуск установок ведётся в ограниченном количестве. Газотурбинные агрегаты так же не прижились, поскольку имели ряд недостатков для гражданского использования, основной, это повышенный расход топлива.

Классификация двигателей внутреннего сгорания так же возможна и по потребляемому горючему. Моторы используют: бензин, дизель, газ, комбинированное топливо.

Газотурбинный мотор:

Устройство

Несмотря на разнообразие установок, виды двигателей внутреннего сгорания компонуются из нескольких узлов. Совокупность компонентов размещается в корпусе агрегата. Чёткая и слаженная работа каждой составной части в отдельности, в совокупности представляет мотор единым неделимым организмом.

  • Блок мотора.Блок цилиндров объёдиняет в себе полости цилиндрической формы, внутри которых происходит воспламенение, и сгорание топливовоздушной смеси. Горения приводит к тепловому расширению газов, а цилиндры мотора служат направляющей, не дающей тепловому потоку выйти за пределы нужных рамок;

Блок цилиндров мотора:


  • Механизм кривошипов и шатунов мотора.Совокупность рычагов, посредством которых на коленчатый вал передается сила, заставляющая совершать вращательные движения;

Кривошипно-шатунный механизм мотора:


  • Распределитель газа мотора.Приводит в движение клапана впуска и выпуска, способствует процессу газообмена. Выводит отработку из полости агрегата, наполняет её нужной порцией с целью продолжить работу механизма;

Газораспределительный механизм мотора:

  • Подвод горючего в моторе.Служит для приготовления порции горючего в нужной пропорции с воздухом, передаёт эту порцию в полость посредством распыления или самотёком;

  • Система воспламенения в моторе.Механизм поджигает поступившую порцию в полости камеры. Выполняется посредством свечи зажигания или свечи накаливания.

Свеча зажигания:

  • Система вывода отработанных продуктов из мотора.Механизм предназначен для эффективного удаления сгоревших продуктов и излишков тепла.

Приёмная труба:

Запуск силовой установки внутреннего сгорания сопровождается подачей горючего в агрегат, в полости камеры объёмного вытеснения субстанция сгорает. Процесс сопровождается выделением тепла и увеличением объёма, что провоцирует перемещение поршня. Перемещаясь, деталь преобразует механическую работу в кручение коленчатого механизма.

По завершению действие повторяется снова, таким образом, не прерываясь ни на минуту. Процессы, в течении которых совершается работа установки:

  • Такт.Перемещение поршня из крайнего нижнего положения в крайнее верхнее положение и в обратном порядке. Такт считается одним перемещением в одну сторону.
  • Цикл.Суммарное количество тактов, необходимое при совершении работы. Конструктивно, агрегаты в состоянии выполнять цикл за 2 (один оборот вала) или 4 (два оборота) такта.
  • Рабочий процесс.Действие, подразумевающее: впуск смеси, сдавливание, окисление, рабочий ход, удаление. Рабочий процесс характерен как для двухтактных моторов, так и для четырёхтактных двигателей.

Двухтактный мотор

Принцип работы двигателя внутреннего сгорания, использующего в качестве рабочего процесса два такта прост. Отличительная особенность мотора, выполнение двух тактов: сдавливание и рабочий ход. Такты впуска и очистки интегрированы в сдавливание и рабочий ход, поэтому вал проворачивается на 360° за рабочий процесс.

Выполняемый порядок таков:

  1. Сдавливание.Поршень из крайнего нижнего положения уходит в крайнее верхнее положение. Перемещение создает разряжение под поршнем, благодаря чему через продувочные отверстия просачивается горючее. Дальнейшее перемещение провоцирует перекрытие отверстия впуска юбкой поршня и отверстий выпуска, выводящих отработку. Замкнутое пространство способствует росту напряжения. В крайней верхней точке заряд поджигается.
  2. Расширение.Горение создает давление внутри камеры, заставляя посредством расширения газов перемещаться поршень в низ. Происходит поочередное открытие выпускных и продувочных окон. Напряжение в области днища провоцирует поступление горючего в цилиндрическую полость, одновременно очищая её от отработки.

Устройство агрегата на два такта исключает механизм распределяющий газы, что сказывается на качестве процесса обмена. Кроме того, невозможно исключить продувку, а это сильно увеличивает расход топлива, поскольку часть смеси выбрасывается наружу с отработанными газами.

Принцип работы двухтактного мотора:


Четырёхтактный мотор

Моторами, которые выполняют 4 такта работы двигателя внутреннего сгорания за рабочий процесс, оснащена используемая сегодня техника. В этих моторах, ввод и вывод горючего и отработки, выполняются отдельными тактами. Двигатели используют механизм распределения газов, что синхронизирует клапана и вал. Преимущество мотора на четыре такта, подача горючего в очищенную от отработанных газов камеру при закрытых клапанах, что исключает утечку топлива.

Порядок таков:

  • Ввод.Перемещение поршня из крайнего верхнего положения в крайнее нижнее. Происходит разряжение в полости, что открывает клапана впуска. Горючее заходит в камеру объёмного вытеснения.
  • Сдавливание.Перемещение поршня снизу вверх (крайние положения). Отверстия входа и выхода перекрыты, что способствует нарастанию давления в камере объёмного вытеснения.
  • Рабочий ход.Смесь загорается, выделяется тепло, резкое увеличение объёма и рост силы, давящей на поршень. Движение последнего в крайнее нижнее положение.
  • Очистка.Отверстия выпуска открыты, поршень перемещается снизу вверх. Избавление от отработки, очистка полости перед следующей порцией рабочей смеси.

Механический КПД двигателя внутреннего сгорания, с циклом на 4 такта ниже, в сравнении с агрегатом на 2 такта. Это обусловлено сложным устройством и наличием механизма распределения газов, который забирает часть энергии на себя.

Принцип работы четырёхтактного мотора:


Механизм искрообразования

Цель механизма, своевременное искрение в полости цилиндра мотора. Искра помогает воспламениться горючему и совершить агрегату рабочий ход. Механизм искрообразования, составная часть электрического оборудования автомобиля, куда входят:

  • Источник хранения электрической энергии, аккумулятор. Источник, вырабатывающий электрическую энергию, генератор.
  • Механическое или электрическое устройство, подающее электрическое напряжение в сеть автомобиля, его еще называют зажигание.
  • Накопитель и преобразователь электрической энергии, трансформатор, или катушка. Механизм обеспечивает достаточный заряд на свечах мотора.
  • Механизм распределения зажигания, или трамблёр. Устройство предназначено для распределения и своевременной подачи в нужный цилиндр электрического импульса на свечи зажигания.


Механизм впуска

Цель механизма, бесперебойное образование в цилиндрах двигателя внутреннего сгорания автомобиля, нужного количества воздуха. Впоследствии, воздух смешивается с топливом, и всё это воспламеняется для рабочего процесса. Устаревшие, карбюраторные моторы для впуска использовали элемент для фильтрации воздуха и воздуховод. Современные установки укомплектованы:

  • Механизм забора воздуха мотором.Деталь выполнена в виде патрубка, определённого профиля. Задача конструкции, подать в цилиндр как можно больше воздуха создав при этом меньшее сопротивление на входе. Всасывание воздушной массы происходит за счет разницы давлений при движении поршня в положение нижней мёртвой точки.
  • Воздушный фильтрующий элемент мотора.Деталь применяется для очистки воздуха, попадающего в мотор. Работа элемента влияет на ресурс и работоспособность силовой установки. Фильтр относится к расходным материалам, и меняется через промежуток времени.
  • Заслонка дросселя мотора.Перепускной механизм, находящийся во впускном коллекторе и регулирующий количество подаваемого в мотор воздуха. Деталь работает за счёт электроники, или механическим путём.
  • Коллектор впуска мотора.Предназначение механизма, распределить количество воздуха равномерно по цилиндрам мотора. Процесс регулируется заслонками впуска и усилителями потока.

Система впуска:


Механизм питания

Назначение, бесперебойная подача горючего для последующего смешивания с воздухом и приготовлением гомогенной стехиометрической смеси. Механизм питания включает:

  • Бак мотора.Ёмкость замкнутого типа, в которой хранится топливо (бензин, солярка). Бак оборудован устройством забора горючего (помпа) и устройством, заправляющим ёмкость (заливная горловина).
  • Топливная проводка мотора.Патрубки, шланги, по которым транспортируется или перенаправляется топливо.
  • Механизм, смешивающий горючее в моторе.Изначально силовые установки оборудовались карбюратором, в современных двигателях применяют инжектор. Задача, подать приготовленную смесь внутрь камеры сгорания.
  • Блок управления.Назначение механизма, управлять смесеобразованием и впрыском. В установках, оборудованных инжектором, устройство синхронизирует работу для увеличения эффективности процесса.
  • Помпа мотора.Устройство, создающее напряжение в топливном проводе мотора и способствующее движению горючей жидкости.
  • Элемент фильтрации.Механизм очищает поступающее топливо от примесей и грязи, что увеличивает ресурс силовой установки.

Механизм питания:


Механизм смазки

Назначение механизма, обеспечить детали силовой установки необходимым количеством масла для создания на поверхностях защитной плёнки. Применение жидкости уменьшает воздействие силы трения в точках соприкосновения деталей, удаляет продукты износа, защищает агрегат от коррозии, уплотняет узлы и механизмы. состоит:

  • Поддон мотора.Ёмкость, в которой помещается, хранится и охлаждается смазочная жидкость. Для нормального функционирования мотора важно соблюдать требуемый уровень масла, поэтому поддоны укомплектованы щупом, для контроля.
  • Масляная помпа мотора.Механизм, перекачивающий жидкость из поддона двигателя и направляющий масло к точкам, нуждающимся в смазке. Движение масла происходит по магистралям.
  • Масляный фильтрующий элемент.Назначение детали, очистить масло от примесей и продуктов износа, которые циркулируют в моторе. Элемент меняют при каждой замене масла, поскольку работа влияет на износ механизма.
  • Охладитель масла мотора.Назначение механизма, отбор излишков тепла, из системы смазки. Поскольку масло, отводит тепло от перегретых поверхностей, то само масло так же подвержено перегреву. Характерная особенность механизма смазки, обязательное использование, не зависимо, от того, какова модель двигателя внутреннего сгорания применяется. Происходит это по той причине, что на сегодня эффективней этого метода защиты мотора нет.

Система смазки:

Механизм выпуска

Механизм предназначен для отвода отработанных газов и уменьшения шума в процессе работы двигателя. Состоит из следующих компонентов:

  • Коллектор выпуска мотора.Набор патрубков, выполненных из жаропрочного материала, поскольку они первыми соприкасаются с раскалёнными газами, выходящими из камеры сгорания. Коллектор гасит колебания и переправляет газы далее в трубу;
  • Труба мотора.Приёмная труба предназначена для получения газов и транспортировки далее по системе. Материал, из которого выполнена деталь, обладает высокой стойкостью к температурам.
  • Резонатор.Устройство, позволяющее разделить газы и снизить их скорость.
  • Катализатор.Устройство очистки и нейтрализации газов.
  • Глушитель мотора.Резервуар с вмонтированными перегородками, благодаря перенаправлению отработанных газов, позволяет снизить шум.

Система выпуска мотора:


Механизм охлаждения

На маломощных двигателях внутреннего сгорания применяется охлаждение мотора встречным потоком. Современные агрегаты, автомобильные, судовые, грузовые используют жидкостное охлаждение. Задача жидкости, забрать на себя часть избыточного тепла и снизить тепловую нагрузку на узлы и механизмы агрегата. Механизм охлаждения включает:

  • Радиатор мотора.Задача устройства передать избыточное тепло от жидкости окружающей среде. Деталь включает в себя набор алюминиевых трубок с отводящими ребрами;
  • Вентилятор мотора.Задача вентилятора, увеличить эффект от охлаждения за счёт принудительного обдува радиатора и отвода с его поверхности излишков тепла.
  • Помпа мотора.Задача водяной помпы обеспечить циркуляцию охлаждающей жидкости по системе. Циркуляция проходит по малому кругу (пока двигатель не разогрет), после чего, клапан переключает движение жидкости на большой круг.
  • Перепускной клапан мотора.Задача механизма, обеспечить переключение циркуляции жидкости с малого круга обращения на большой круг.

Система охлаждения мотора:


Несмотря на многочисленные попытки уйти от двигателя внутреннего сгорания, в ближайшем обозрим будущем, такой возможности не предвидится. Поэтому силовые установки данного типа еще долго будут радовать нас своей слаженной работой.

Двигатель — сердце. Как много сегодня означает это слово. Без двигателя не работает ни одно устройство, двигатель дает жизнь любому агрегату. В данной статье рассмотрим, что такое двигатель, какие виды бывают, как работает двигатель автомобиля.

Основная задача любого двигателя – превратить топливо в движение. Одним из способов достичь такого можно с помощью сжигания топлива внутри мотора. Отсюда и название двигатель внутреннего сгорания.

Но, кроме ДВС следует различать и двигатель внешнего сгорания. Примером служит паровой двигатель теплохода, когда его топливо (дерево, уголь) сгорают за пределами мотора, генерируя пар, являющийся движущей силой. Двигатель внешнего сгорания не так эффективен как внутреннего.

На сегодняшний день широкого распространения получил двигатель внутреннего сгорания, которым укомплектованы все автомобили. Несмотря на то, что КПД ДВС не близко к отметке 100 %, лучшие ученые и инженеры трудятся над доведением до совершенства.

По видам двигателя делятся:

Бензиновые: могут быть как карбюраторными так и инжекторными, используется система впрыска.

Дизельные: работают на основе дизельного топлива, которое под давлением распыляется в камере сгорания топливной форсункой.

Газовые: работают на основе сжиженного или сжатого газа, произведённого от переработки угля, торфа, дерева.
Итак, перейдем к начинке мотора.

Основным механизмом является блок цилиндров, он же часть корпуса механизма. Блок состоит из различных каналов внутри себя, что служит для циркуляции охлаждающей жидкости, снижая температуру механизма, в народе называется рубашка охлаждения.

Внутри блока цилиндров расположены поршни, их количество зависит от конкретного двигателя. На поршень одеваются в верхней части компрессионные кольца, а в нижней маслосъемные. Компрессионные кольца служат для создания герметичности при сжатии для воспламенения, а маслосъемные для забора смазывающей жидкости со стенки блока цилиндров и предотвращения попадания масла в камеру сгорания.

Кривошипно-шатунный механизм: передает вращательный момент от поршня к коленвалу. Состоит из поршней, цилиндров, головок, поршневых пальцев, шатунов, картера, коленвала.

Алгоритм работы двигателя достаточно прост: топливо распыляется форсункой в камере сгорания, где перемешивается с воздухом и под воздействием искры образованная смесь воспламеняется.

Образованные газы толкают поршень вниз и вращательный момент передается коленвалу, который передает вращение трансмиссии. С помощью шестеренного механизма происходит движение колес.

Если сотворить бесперебойный цикл воспламенений горючей смеси за определенное количество времени, то получим примитивный двигатель.

Современные моторы основаны на четырехтактном цикле сгорания для превращения топлива в движение транспорта. Иногда такой такт называют в честь немецкого ученого Отто Николауса, сотворивший в 1867 году такт, состоящий из таких циклов: впуск, сжатие, горение, выведение продуктов сгорания.

Описание и предназначение систем:

Система питания: дозирует образованную смесь воздуха и топлива и подает ее в камеры сгорания — цилиндры двигателя. В карбюраторном варианте состоит из карбюратора, воздушного фильтра, впускного трубоканала, фланца, топливного насоса с отстойником, бензобака, топливопровода.

Система газораспределения: балансирует процессы впуска горючей смеси и выпуска отработанных газов. Состоит из шестерен, кулачкового вала, пружины, толкателя, клапана.

: предназначена для подачи тока на контакт свечи для воспламенения рабочей смеси.

: уберегает мотор от перегрева, путем циркуляции и охлаждения жидкости.

: подает смазывающую жидкость к трущимся деталям, с целью минимизации трения и износа.

В данной статье рассмотрены понятие двигателя, его виды, описание и назначение отдельных систем, такт и его циклы.

Многие инженеры работают на тем, чтобы минимизировать рабочий объем мотора и существенно увеличить мощность, сократив потребление топлива. Новинки автопрома в очередной раз подтверждают рациональность конструкторских разработок.