Салон

Основные понятия об управлении дорожным движением. Эффективное управление дорожным движением

Введение

Понятие адаптивного управления дорожным движением в узле транспортной сети

Сравнение временно-зависимой и транспортно-зависимой стратегии управления дорожным движением

Постановка и анализ моделирования

Разработка базы нечетких правил, определения параметров управления движение транспортных потоков в узле транспортной сети

1 Построение функции принадлежности

2 Построение правил соответствия конкретному классу параметра управления

3 База нечетких правил

Заключение

Список литературы

Введение

Изменившиеся условия мобильности, характеризующиеся увеличением в течение последних лет количества автомобилей, привели к повышению нагрузки на транспортную инфраструктуру и окружающую среду. Растущую потребность в улучшении условий передвижения нельзя полностью удовлетворить (ни внутри населенных пунктов, ни за их пределами) только лишь созданием новых путей транспортного сообщения или проведением иных строительных мероприятий. Для выхода из сложившейся ситуации необходимо внедрение целого комплекса мер по организации и управлению дорожным движением. Адаптивные системы управления дорожным движением (АСУД) представляют новый подход к организации управления дорожным движением и совместно с управляемыми ими высокопроизводительными транспортными компьютерами реализуют соответствующие технологии управления.

Постоянное увеличение количества транспортных средств в условиях недостаточной пропускной способности дорог ведёт к затруднениям движения транспортных потоков. Интеллектуальные транспортные системы (ИТС) позволяют минимизировать образование заторных ситуаций и увеличивать пропускную способность транспортной сети. Наработки в области ИТС примеряются для организации дорожного движения населённых пунктов и магистралей. Оптимизация управления дорожным движением достигается за счет взаимодействия управляющих, классифицирующих, прогнозирующих, экспертных, принимающих решения или поддерживающих эти процессы подсистем ИТС. В связи с этим стоит задача поиска методов обработки информации о нештатных ситуациях на улично-дорожной сети (УДС).

В данной работе будут рассмотрены следующие вопросы: понятие адаптивного управления дорожным движением в узле транспортной сети, на сети, а так же сравнение временно-зависимой и транспортно-зависимой стратегии управления дорожным движением.

1. Понятие адаптивного управления дорожным движением в узле транспортной сети

Возможности улучшения условий движения транспорта за счет оптимальной организации движения во многом недооценены, и развитие транспортной инфраструктуры понимается в основном как мероприятия, связанные со строительством новых дорог и магистралей, реконструкцией существующих путепроводов и развязок. Вместе с тем значительно улучшить транспортную ситуацию позволяет внедрение современных инновационных технологий, получивших название «Интеллектуальные Транспортные Системы» (ИТС). Внедрение ИТС-технологий в России позволяет лучше управлять транспортными потоками, повысить уровень пропускной способности улично-дорожной сети и снизить загрузку отдельных ее элементов.

Рост автомобильного парка и объема перевозок ведет к увеличению интенсивности движения, что в условиях городов с исторически сложившейся застройкой приводит к возникновению транспортной проблемы. Особенно остро она проявляется в узловых пунктах улично-дорожной сети. Здесь увеличиваются транспортные задержки, образуются очереди и заторы, что вызывает снижение скорости сообщения, неоправданный перерасход топлива и повышенное изнашивание узлов и агрегатов транспортных средств. Изменившиеся условия мобильности, характеризующиеся увеличением в течение последних лет количества автомобилей, привели к повышению нагрузки на транспортную инфраструктуру и окружающую среду. Растущую потребность в улучшении условий передвижения нельзя полностью удовлетворить (ни внутри населенных пунктов, ни за их пределами) только лишь созданием новых путей транспортного сообщения или проведением иных строительных мероприятий. Для выхода из сложившейся ситуации необходимо внедрение целого комплекса мер по организации и управлению дорожным движением.

Адаптивные системы управления дорожным движением (АСУД) представляют новый подход к организации управления дорожным движением и совместно с управляемыми ими высокопроизводительными транспортными компьютерами реализуют соответствующие технологии управления. В настоящее время в мировой практике в составе АСУД наиболее распространены следующие технологии управления транспортными потоками:

Технология управления по фиксированным планам (координированное управление);

Технология сетевого адаптивного управления;

Технология ситуационного управления.

САУДД-это система управления дорожным движением с центрально-распределенным интеллектом, состоящая из:

центрального пункта управления (ЦПУ);

точек адаптивного управления дорожным движением, оборудованных интеллектуальными контроллерами и детекторами транспорта, обеспечивающих:

локальное адаптивное управление наиболее сложными и важными пересечениями и участками УДС;

информационное взаимодействие с ЦПУ;

системных детекторов, сообщающих в ЦПУ сведения о транспортных потоках;

системных контроллеров, управляемых из ЦПУ постоянно или периодически.

Организация дорожного движения на уровне служб дорожного движения представляет комплекс инженерных и организационных мероприятии на существующей улично-дорожной сети, обеспечивающих безопасность и достаточную скорость транспортных и пешеходных потоков. К числу таких мероприятий относится управление дорожным движением, которое, являясь составной частью организации движения, как правило, решает более узкие задачи. В общем случае под управлением понимается воздействие на тот или иной объект с целью улучшения его функционирования. Применительно к дорожному движению объектом управления являются транспортные и пешеходные потоки.

Сущность управления движением заключается в том, чтобы обязывать водителей и пешеходов, запрещать или рекомендовать им те или иные действия в интересах обеспечения скорости и безопасности. Оно осуществляется путем включения соответствующих требований в Правила дорожного движения, а также применением комплекса технических средств и распорядительными действиями инспекторов дорожно-патрульной службы и других лиц, имеющих соответствующие полномочия.

2. Сравнение временно-зависимой и транспортно-зависимой стратегии управления дорожным движением

Современное состояние управления транспортными потоками в большинстве городов можно вообще характеризовать так, что устройства управления (узлы) управляются по фиксированному графику или по состоянию транспортного потока. Существенная разница заключается в том, что для управления по графику времени не нужны детекторы и система неспособна реагировать на какие-либо изменения транспортного потока. В случае транспортно-зависимого управления пере стоп-линиями имеются детекторы, которые фиксируют моментальное присутствие транспортных средств, и устройство управления, таким образом, реагирует на мгновенные условия в узле, увеличением длительности зеленого сигнала. Следовательно, речь идет об управлении в секундной сетке времени.

Временно-зависимое (автономное) управление - транспортные состояния определяются на основании статистического анализа исторических значений характеристик движения транспортных потоков (интенсивность движения) и на их основании определяются выходные значения процесса регулирования.

Транспортно-зависимое (режим текущего времени - онлайн) управление, в англосаксонской литературе, называемое также Traffic Responsive, заключается в том, что вмешательство системы управления рассчитывается по мгновенной транспортной ситуации. Методы режима онлайн обеспечивают работу в реальном времени и на основании переменных входных данных о движении транспортных потоков каждую секунду изменяют и оптимизируют параметры управления, т.е. продолжительность зеленого сигнала в соответствующем направлении. Устройства управления в данном режиме работают независимо или, в крайнем случае, расположены в линии и линейно координированы.

Управление осуществляется на локальном уровне. Если используется центр управления, то потом часто осуществляется мониторинг состояния устройств управления или мониторинг состояния транспортных потоков. Управление светофорами в реальном времени является достаточно известным и стандартно используется под наименованием транспортно-зависимое управление или динамическое управление. Его принцип заключается в том, что транспортный узел оснащен обычно двумя видами датчиков: датчиками интервалов и вызова, которыми являются в большинстве случаев индуктивные петли. Транспортное устройство управления управляет по программе, которая непрерывно тестирует состояние транспортного потока над отдельными датчиками и на основании заранее заданных алгоритмов увеличивает длительность сигналов, модифицирует последовательность фаз или вкладывает фазу по вызову. Данные изменения обычно осуществляются в рамках заранее определенного времени цикла и заранее определенных максимальных значений длительности зеленых сигналов. Датчик интервалов, расположенный приблизительно на 30-50 м перед стоп-линией, получил свое название в результате того, что он непрерывно измеряет интервалы времени между транспортными средствами и если они меньше данного значения (обычно 3-5 секунд), то он увеличивает продолжительность зеленых сигналов вплоть до заранее заданного максимума. Такой способ измерения называется «Управление измерением интервала времени». Вторая возможность заключается в том, что отдельные узлы соединены с центром управления движением транспортных потоков, который на уровне района координирует и управляет работой узлов. Для управления областью используются следующие режимы:

Временно-зависимое (автономное) управление - информация о характеристиках состояния транспортных потоков в районе получают путем статистического анализа, данные о характеристиках движения транспортных потоков (интенсивности и состава движение) за прошлые годы, измеренных в главных точках транспортной сети, и на их основании определяется режим работы транспортных устройств управления. Затем они вводятся в устройства управления в зависимости от времени суток или дня года. При расчетах оптимизируется длительность зеленых сигналов, продолжительность цикла и временной сдвиг. В качестве примера метода, основанного на автономном режиме, можно привести метод TRANSYT, когда фиктивные транспортные средства «выпускаются» в соответствии с заранее заданными правилами в область, и через данную область проходят на основании и в соответствии с моделью движения транспортного потока. На их движение оказывает влияние изменение управляемых параметров узла. С помощью числовых математических методов для разных параметров, как например, длительность цикла, длительность зеленых сигналов и временной сдвиг, находится минимум определенной целевой функции (оптимизация параметров).

Транспортно-зависимое (режим онлайн) управление характеризуется тем, что для различных состояний транспортных потоков на сети заранее рассчитываются системы сигнальных планов, которые хранятся в устройствах управления или в центре управления движением транспортных потоков. Для расчета максимальных значений длительности зеленого сигнала, длительности цикла и временного сдвига, как правило, используется метод TRANSYT. Одновременно в области выбраны стратегические датчики и составлены логические уравнения, описывающие разные комбинации состояний всех или выбранных датчиков. В зависимости от мгновенной транспортной ситуации посредством соответствующего уравнения выбирается программа, которая лучше всех соответствует данной ситуации. Примером может служить описание состояния транспортного потока по стратегическим датчикам SDV1 и SDV5, которое означает: если в точке SDV1 существует степень 2 и одновременно в точке SDV5 - степень 4, то следует выбрать сигнальную программы номер 6.=2 &SDV5=4 THENSP6

Если в сети не классифицируется состояние транспортного потока, то для описания используется только один параметр, которым является интенсивность движения. Транспортно-зависимое управление используется в реальной шкале времени и каждую секунду принимает сигналы выбранных датчиков. Однако переключение сигнальных программ осуществляется с определенным гистерезисом для обеспечения стабильности в транспортной сети. На практике это означает изменение программы устройства управления в сетке нескольких десятков минут.

Оптимизация в автономном режиме дает возможность рассчитать основные регулируемые величины: длительность цикла, последовательность фаз, временной сдвиг и длительность зеленых сигналов для базы исторических данных (данных прошлых лет). Эти данные получаются путем длительного измерения с помощью транспортных детекторов. На основании длительно записываемых данных обычно разрабатывается статистическая модель, которая для интенсивности движения обычно дает возможность определить типичные рабочие дни и особенно субботу и воскресенье, в результате чего сильно ограничиваются изменения переменных. Существенной чертой является, то, что речь идет о макроскопическом управлении в автономном режиме, основанном на детерминистическом моделировании потоков и алгоритмах оптимизации, когда рассчитываются системы сигнальных планов по пространственно-временному вектору данных об интенсивности за предыдущие годы. Модели оптимизации использованы для расчетов в автономном режиме сигнальных временных планов транспортных устройств управления в транспортной сети или линии.

В таком случае процесс управления выбирает в зависимости от времени самый выгодный из множества заранее подготовленных сигнальных планов. Такой способ называется временно-зависимым управлением.

Преимущества временно-зависимого управления:

возможность простого контроля;

простота модификации сигнальных программ;

относительно низкие расходы на оборудование и установку.

Недостатки временно-зависимого управления:

нельзя повысить эффективность использования времени сигналов (разрешение движения для отдельных направлений);

нельзя покрыть пики интенсивности (необходим определенный резерв интенсивности);

нельзя вступать в процесс управления со стороны отдельных транспортных средств или пешеходов;

нельзя устранить возникшие транспортные заторы.

3. Постановка и анализ моделирования

Задача моделирования стратегий управления дорожным движением в узле транспортной сети, как и на сети состоит в разработке классического модуля нечеткого управления. Его составляющие:

Блок фуззификации: система управления с нечеткой логикой оперирует нечеткими множествами, поэтому конкретное значение входного сигнала модуля нечеткого управления подлежит операции фуззификации, в результате которой ему будет сопоставлено нечеткое множество.

База правил представляет собой множество нечетких правил определения нечеткого множества, которому принадлежат выходной сигнал системы.

Блок выработки решения: непосредственное определение множества принадлежности выходного сигнала при конкретно заданных множествах входных сигналов.

Блок дефуззификации представляет процедуру отображения нечеткого множества, получаемого на выходе блока выработки решения в конкретное значение, представляет собой управление воздействия.

Для построения стратегий управления предлагают использовать программный комплекс «TRANSYT», основанный на оценке поведения транспортного потока с помощью моделирования дорожного движения и позволяющего выбирать оптимальные параметры режима работы светофорной сигнализации. По результатам моделирования дорожного движения в программе для различных комбинаций интенсивности движения определенно оптимальное время горения зеленного сигнала светофора.

4. Разработка базы нечетких правил определения параметров управления движением транспортных потоков в узле транспортной сети

Построение базы нечетких правил определения оптимального времени горения зеленого сигнала светофора на перекрестке, характеризуемом максимальными интенсивностями движения на пересекающихся дорогах. Необходимые данные были получены при помощи транспортного детектора.

Базу правил классификации стратегий управления создаем для системы с двумя входами и одним выходом:

1. Необходимы данные в виде множества . Далее находим области определения элементов множества , которые разбиваем на областей (отрезков), причем значение N подбираем индивидуально, а отрезки могут иметь одинаковую или различную длину. Отдельные области можно обозначить следующим образом: …, S,,…,.

Строим функции принадлежности определенному классу элементов заданного множества обучающих данных. Предлагаем использовать функции треугольной формы по принципу: вершина графика расположена в центре области разбиения, ветви графика лежат в центрах соседних областей. Степень принадлежности данных определенным классом будет выражаться значение функций принадлежности .

Затем для каждой пары определяем правило соответствия классу стратегии управления. Окончательное для каждой пары обучения данных можно записать 1 правило, то есть

Поскольку в наличии имеется большое количество пар существует высокая вероятность того, что некоторые из правил окажутся противоречивыми. Это относится к правилам с одной и той же посылкой (условием), но с разными средствами (выводами).

Одним из методов решения этой проблемы заключается в приписывании каждому правилу так называемые степени истинности с последующим выбором противоречащих друг другу правил того, у кого эта степень окажется наибольшей. После чего база правил заполняется качественной информацией.

Например, согласно выше описанным правилам степени истинности имеют вид

4. Для определения количественных значений параметра оптимизации стратегии управлении необходимо выполнить операцию дефуззификации. Для расчета выходного значения управления воздействия можно и рекомендуется воспользоваться способом дефуззификации по методу центра тяжести.

1 Построение функции принадлежности

Для элементов множества обучающих систему данных обозначим следующую область определения

Разбив Х 1 Х 2 и G на 2n+1 отрезков и строим функции принадлежности вида


Рисунок 4.1 Общий вид графика функций принадлежности

Имеем в итоге:

Рисунок 4.2 Графики функций принадлежности интенсивности х 1 к классам разбиения множества Х 1.

Определяем функции принадлежности µ(x 1) на отрезках разбиения области Х 1 методом отнесения µ(x 1) к определенному классу.

Таблица 4.1. Функции принадлежности µ(x 1) на отрезках разбиения области Х 1 (n=4)

Отрезок разбиения

Обозначение

Функция принадлежности µ(х 1)

;

;

, ;

, ;

,;

,;

;

;

, ;


Рисунок 4.3 Графики функций принадлежности интенсивности х 2 к классам разбиения множества Х 2 .

Определяем функции принадлежности µ(x 2) на отрезках разбиения области Х 2 методом отнесения µ(x 2) к определенному классу по рисунку 4.3.

Таблица 4.2 Функции принадлежности µ(x 2) на отрезках разбиения области Х 2 (n=5)

Отрезок разбиения

Обозначение

;

,;

, ;

,;

, ;

,;

;

;

,;

;

, ;


Рисунок 4.4 Графики функций принадлежности интенсивности gк классам разбиения множества Q.

Определяем функции принадлежности µ(g) на отрезках разбиения области Gметодом отнесения µ(g) к определенному классу

Таблица 4.3 Функции принадлежности µ(g) на отрезках разбиения области G(n=6)

Отрезок разбиения

Обозначение

Функция принадлежности µ(х 2)

;

;

;

, ;

;

,;

;

,;

,;

;

;


2 Построение правил соответствия конкретному классу параметра управления

Определяем правило соответствия классу стратегий управления и приписываем каждому правилу степень истинности.

Таблица 4.4 Значения функций принадлежности данных определенным классам

(i)µ((i))(i)µ((i))g(i)µ(g (i))







Получаем таблицу с присвоенными степенями истинности и степень истинности для каждой из пар x 1 , x 2 .

транспорт управление дорожный пассажирский

Таблица 4.5 Нечеткие правила, сгенерированные по обучающимся данным и степень истинности этих правил


3 База нечетких правил

Согласно определенным в таблице 4.7 правилам составляем базу нечетких правил, определяющую оптимальное значение зеленого сигнала светофора.

Таблица 4.6 База нечетких правил
















































































Заключение

В данной работе были рассмотрены следующие вопросы: понятие адаптивного управления дорожным движением в узле транспортной сети, на сети, а так же сравнение временно-зависимой и транспортно-зависимой стратегии управления дорожным движением.

Основные концепции адаптивного управления, реализуемые в различных странах и преимущества такие как: обеспечение высокую работоспособность в условиях изменения свойств управляемого объекта, окружающей среды и целей, за счет разработки новых алгоритмов функционирования.

Организация движения городского пассажирского общественного транспорта при работе адаптивной системы управления дорожным движением, реализация данного условия происходит за счет установки радиометок на транспортные средства и считывающих устройств на светофорные объекты. Распознавание транспортного средства позволит «растягивать» время горения зеленого сигнала и обеспечить беспрепятственный проезд общественного транспорта. А так жеможно использовать принцип обмена данными непосредственно между контроллерами соседних перекрестков. Данные детекторов, подключенные к дорожному контроллеру, дополняются данными тех детекторов, которые установлены на соседних перекрестках. Этот позволяет директивно задавать состояние сигнальных групп, а также обеспечивает приоритет общественного транспорта

Так как адаптивное управление очень затратно был предложен альтернативный метод для определения оптимального времени горения зеленого сигнала светофора на пересечение. А именно метод разработки классического модуля нечеткого управления, исходными данными для которого служили множества данных об интенсивности двух пересекающихся дорог. В данной работе были рассмотрены первые три блока данного метода и были проведены расчеты.

Список литературы

1. П. Пржибыл, М. Свитек "Телематика на транспорте", 2004 г;

Коноплянко, В.И., Гуджоян О.П., Зырянов В.В., Березин А.С. Безопасность движения.

Кузин М.В. Имитационное моделирование транспортных потоков при координированном режиме управления Омск - 2011;

В.Г. Кочерга, Е.Е. Шаталова Технические средства современных автоматизированных систем управления дорожным движением. Ростов-на-Дону 2011;

Е.А. Петров статья «Адаптивная система управления дорожным движением в составе городской ИТС»;

Абрамова Л.С. Журнал Вестник Харьковского национального автомобильно-дорожного университета.

Автоматизированные системы управления дорожным движением (АСУДД) - это взаимосвязанный комплекс технических, программных и организационных мер, собирающих и обрабатывающих информацию о данных транспортных потоков и на основе этого оптимизирующих управление движением. Задачей автоматизированных систем управления дорожным движением (АСУДД) является обеспечение организации безопасности дорожного движения на дорогах.

АСУДД подразделяются на несколько видов:

Магистральные автоматизированные системы управления дорожным движением (АСУДД) координированного управления - бесцентровые, централизованные и централизованные интеллектуальные.

  • · бесцентровые АСУДД - нет необходимости создания управляющего пункта. Существует 2 модификации бесцентровых АСУДД. В одной из них работу синхронизирует главный контроллер, к которому идет связь от остальных контроллеров (линия одна для всех). В следующей модификации бесцентровых АСУДД от всех контроллеров идет своя линия связи.
  • · централизованные АСУДД - имеют центр управления, со связанными с ним контроллерами их собственными линиями связи. Зачастую, АСУДД могут осуществлять многопрограммное КУ со сменой программ в течение дня.
  • · централизированные интеллектуальные АСУДД - они оснащены определителями транспорта, и в зависимости от загруженности потока могут менять планы координации движения.

Общегородские автоматизированные системы управления дорожным движением (АСУДД) - упрощенные, интеллектуальные, с управлением движением на городских дорогах непрерывного движения и с реверсивным движением.

· интеллектуальные АСУДД - содержат мощные управляющие вычислительные комплексы (УВК), и сеть изменяющихся информационных дисплеев. Эти АСУДД могут проводить непрерывный контроль потока транспорта и могут управлять автоматическое адаптивное управление ДД и позволяю перераспределить транспортные потоки по сети.

АСУ ДД, как часть ИТС, выполняет управляющие и информационные функции, основными из которых являются:

  • · управление транспортными потоками;
  • · обеспечение транспортной информацией;
  • · организация электронных платежей;
  • · управление безопасностью и управление в особых ситуациях.

В общем виде подсистемы АСУ ДД могут быть представлены как совокупность устройств дорожной телематики, контроллеров и автоматизированных рабочих мест (АРМ), включенных в сеть обмена данными, с организацией центрального и местных центров управления -- в зависимости от плотности и интенсивности дорожного движения.

В качестве устройств дорожной телематики применяются знаки переменной информации (ЗПИ), многопозиционные дорожные указатели, табло переменной информации (ТПИ), детекторы транспорта, автоматические дорожные метеостанции (АДМС), видеокамеры и т. д.

Телекоммуникационную часть АСУ ДД составляет дорожная интегрированная система связи. Устойчивое функционирование систем связи на автомобильных дорогах позволяет повысить уровень безопасности дорожного движения и обеспечить эффективную работу служб содержания дороги, а также оперативных и спасательных служб при возникновении чрезвычайных ситуаций.

В составе ДИСС могут быть организованы следующие функциональные подсистемы:

  • · информационного обмена АСУ ДД;
  • · связи с подвижными объектами (включает подсистемы оперативно-технологической радиосвязи и радиодоступа);
  • · управления и технической эксплуатации;
  • · обеспечения информационной безопасности ДИСС;
  • · предоставления инфокоммуникационных услуг на возмездной основе.

Повышение эффективности управления дорожным движением связано с созданием автоматизированных систем управления дорожным движением (АСУ ДД), которые являются неотъемлемыми компонентами интеллектуальных транспортных систем (ИТС). ИТС -- это комплексная система информационного обеспечения и управления на наземном автомобильном транспорте, основанная на применении современных информационных и телекоммуникационных технологий и методов управления.

Для обеспечения функционирования АСУ ДД и предоставления инфокоммуникационных услуг участникам дорожного движения создаются ДИСС, к которым в настоящее время предъявляются следующие обобщенные требования:

  • · многофункциональность;
  • · устойчивость;
  • · экономичность.

АСУ «ГОРОД-ДД» - предназначена для обеспечения эффективного управления движением транспортных и пешеходных потоков в городах при помощи средств, светофорной сигнализации, видеоконтроля и регистрации нарушений на дорогах, оперативного анализа экологической обстановки в городе, контроля движения маршрутного транспорта и др.

Основные достоинства и преимущества АСУ «ГОРОД-ДД»

  • - значительное повышение эффективности управления дорожным движением и контроля состояния дел на дорогах, что позволяет ежегодно экономить около 5-8 миллионов долларов в год в масштабах областного центра (экономия складывается из снижения расхода горючего, сокращения времени проезда автотранспорта, времени пребывания пассажиров в пути и т.д.);
  • - более эффективное использование организационно-профилактических мероприятий по нормализации движения на дорогах;
  • - комплексный подход к организации дорожного движения;
  • - использование отечественных технических и программных средств, ориентированные на современные технологии и современные методы управления дорожным движением в соответствии с требованиями ISO 9001;
  • - новые возможности по контролю состояния дел на дорогах: визуальный контроль городских перекрестков, видеорегистрация дорожно-транспортных происшествий, видеорегистрация нарушений скоростного режима и правил проезда перекрестков, оперативный анализ экологической обстановки и др.;
  • - возможность поэтапного ввода в действие, путем постепенной замены существующих систем управления дорожным движением с истекшим сроком эксплуатации и полная совместимость любой из частей предлагаемой системы (контроллеров, ЦУП, МЗЦ) со всеми типами существующего оборудования.

Автоматизированная система «Город-ДД»:

  • · Центрального управляющего пункта;
  • · Модулей зональных центров (при необходимости);
  • · Контроллеров (в трех вариантах исполнения - С, СМ, СЛ);
  • · Дополнительного оборудования;
  • · Комплекта программного обеспечения.

На уровне служб дорожного движения, организация дорожного движения представляет собой комплекс инженерных и организационных мероприятий на существующей улично-дорожной сети, обеспечивающих безопасность и достаточную скорость транспортных и пешеходных потоков. К числу таких мероприятий относится управление дорожным движением, которое, как правило, решает более узкие задачи. В общем случае под управлением понимается воздействие на тот или иной объект с целью улучшения его функционирования. Применительно к дорожному движению объектом управления являются транспортные и пешеходные потоки. Частным видом управления является регулирование, т.е. поддержание параметров движения в заданных пределах.

С учетом того, что регулирование является лишь частным случаем как управления, так и организации движения, а целью применения технических средств является реализация ее схемы, употребляется термин "технические средства организации движения" или "технические средства управления движением", что соответствует принятым нормативным документам (ГОСТ 23457-86).

Вместе с тем, в силу сложившейся традиции, термин "регулирование" также получил широкое распространение. Например, в Правилах дорожного движения (ПДД) перекрестки и пешеходные переходы, оборудованные светофорами, называются регулируемыми, в отличие от нерегулируемых, где светофоры отсутствуют. Существуют также термины "цикл регулирования", «регулируемое направление" и т.п. В специальной литературе перекресток, оборудованный светофором, нередко называется "светофорным объектом".

Сущность управления заключается в том, чтобы обязывать водителей и пешеходов, запрещать или рекомендовать им те или иные действия в интересах обеспечения скорости и безопасности. Оно осуществляется путем включения соответствующих требований в ПДД, а также применением комплекса технических средств и распорядительными действиями инспекторов дорожно-патрульной службы ГАИ и других лиц, имеющих соответствующие полномочия.

Объект управления, комплекс технических средств и коллективы людей, вовлеченные в технологический процесс управления движением,

образуют контур управления (рис.1). Поскольку часть функций в контуре управления часто выполняется автоматическим оборудованием, сложилось употребление терминов "автоматическое управление" или "системы управления". Объект управления.

Рис.1. Структурная схема контура управления.

Автоматическое управление осуществляется без участия человека по заранее заданной программе, автоматизированное - с участием человека-оператора. Оператор, используя комплекс технических средств для сбора необходимой информации и поиска оптимального решения, может корректировать программу работы автоматических устройств. Как в первом, так и во втором случае в процессе управления могут быть использованы ЭВМ. И, наконец, существует ручное управление, когда оператор, оценивая транспортную ситуацию визуально, оказывает управляющее воздействие на основе имеющегося опыта и интуиции. Контур автоматического управления может быть как замкнутым, так и разомкнутым.

При замкнутом контуре существует обратная связь между средствами и объектом управления (транспортным потоком). Автоматически она может осуществляться специальными устройствами сбора информации - детекторами транспорта. Информация вводится в устройства автоматики, и по результатам ее обработки эти устройства определяют режим работы светофорной сигнализации или дорожных знаков, способных по команде менять свое значение (управляемые знаки). Такой процесс получил название гибкого или адаптивного управления.

При разомкнутом контуре, когда обратная связь отсутствует, управляющие светофорами устройства - дорожные контроллеры (ДК) переключают сигналы по заранее заданной программе. В этом случае осуществляется жесткое программное управление.

На рис.1 цепь обратной связи, замыкающая контур автоматического управления, показана штриховой линией с учетом, что эта связь может существовать или отсутствовать. При ручном управлении обратная связь существует всегда (в силу визуальной оценки оператором условий движения), поэтому ее цепь на рис.1 показана сплошной линией.

В соответствии со степенью централизации можно рассматривать два вида управления: локальное и системное. Оба вида реализуются вышеописанными способами.

При локальном управлении переключение сигналов обеспечивает контроллер, расположенный непосредственно на перекрестке. При системном контроллеры перекрестков, как правило, выполняют функции трансляторов команд, поступающих, как правило, по специальным каналам связи из управляющего пункта (УП). При временном отключении контроллеров от УП они могут обеспечивать и локальное управление. Оборудование, расположенное вне управляющего пункта, получило название периферийного (светофоры, контроллеры, детекторы транспорта), на управляющем пункте - центрального (средства вычислительной техники, диспетчерского управления, устройства телемеханики и т.д.).

На практике применяют термины "локальные контроллеры" и "системные контроллеры". Первые не имеют связи с УП и работают самостоятельно, вторые такую связь имеют и способны реализовать локальное и системное управление.

При локальном ручном управлении оператор находится непосредственно на перекрестке, наблюдая за движением транспортных средств и пешеходов. При системном он располагается в управляющем пункте, т.е. вдали от объекта управления, и для обеспечения его информацией об условиях движения могут быть использованы средства связи и специальные средства отображения информации. Последние выполняются в виде светящихся карт города или районов - мнемосхем, устройств вывода с помощью ЭВМ графической и алфавитно-цифровой информации на электронно-лучевую трубку - дисплеев и телевизионных систем, позволяющих непосредственно наблюдать за контролируемым районом.

Локальное управление применяется чаще всего на отдельном или, как говорят, изолированном перекрестке, который не имеет связи с соседними перекрестками ни по управлению, ни по потоку. Смена сигналов светофора на таком перекрестке обеспечивается по индивидуальной программе независимо от условий движения на соседних перекрестках, а прибытие транспортных средств к этому перекрестку носит случайный характер.

Организация согласованной смены сигналов на группе перекрестков, осуществляемая в целях уменьшения времени движения транспортных средств в заданном районе, называется координированным управлением (управлением по принципу "зеленой волны» (ЗВ)). В этом случае, как правило, используется системное управление.

Любое устройство автоматического управления функционирует в соответствии с определенным алгоритмом, который представляет собой описание процессов переработки информации и выработки необходимого управляющего воздействия. Применительно к дорожному движению перерабатывается информация о параметрах движения и определяется характер управления светофорами, воздействующими на транспортный поток. Алгоритм управления технически реализуется контроллерами, переключающими сигналы светофоров по предусмотренной программе. В автоматизированных системах управления с использованием ЭВМ алгоритм решения задач управления реализуется также в виде набора программ ее работы.

Современная автоматизированная система управления дорожным движением включает в себя комбинацию различных технических средств и программных методов, главной целью которых является обеспечение безопасного движения транспортных средств и пешеходов (участников дорожного движения). Комплексный профессиональный подход к организации дорожного трафика позволяет сократить количество ДТП, предотвратить заторы, что приводит к существенному улучшению экологической ситуации в больших городах. Тщательно разработанная система АСУДД, которая соответствует всем нормативам в сочетании с грамотно составленным проектом организации дорожного движения - залог безопасности на автомобильных дорогах с оживленным транспортным потоком.

Если разобраться в системе АСУДД глубже, то это искусственный интеллект, заточенный под управление транспортом учитывая различные факторы, определенного объекта и участка улично-дорожной сети. Система АСУДД является частью интеллектуальной транспортной системы (ИТС). Система АСУДД адаптируется под интенсивность движения транспорта, выполняет анализ и оценку ситуации после чего принимает меры по разгрузке проблемных узлов улично-дорожной сети.

Системой АСУДД происходит перераспределение транспортных потоков средствами периферийного оборудования, такими как табло отображения информации - ТОИ (информационные динамические табло), управляемые дорожные знаки (УДЗ).

Средствами управляемых дорожных знаков (УДЗ) система АСУДД перенаправляет транспортные потоки на съезды и транспортные узлы меньшей загруженности или уменьшает скорость движения потока для предотвращения затора на съезде. При дорожно-транспортном происшествии система АСУДД может запретить проезд на данный участок, тем самым предупреждая образование глухой пробки в которой пришлось бы находиться участникам дорожного движения до момента ликвидации последствий ДТП.

Табло отображения информации служит для информирования водителей транспортных средств о возможных пробках и заторах на определенных участках УДС. Учитываю информацию полученную с информационного табло, водитель выбирает пути объезда проблемного участка улично -дорожной сети (УДС).

Сбор информации для анализа дорожной ситуации происходит так же средствами периферийного оборудования, такими как детекторы транспорта и камеры наблюдения.

Система автоматизированного управления движением может включать в себя так же и светофорные объекты , как на перекрестках, примыканиях так и светофоры реверсивного исполнения. Взаимодействие всего перечисленного оборудования и системы аналитики и управления движением и есть система автоматизированного управления дорожным движением (АСУДД). Такие системы могут применяться как глобально (управление всем городом) так и локально (управление определенным транспортным узлом или участком УДС). В систему управления могут включаться метеостанции для оценки погодных условий и для предупреждения водителей о боковых ветрах, гололёде, снегопаде и прочих стихиях.

Очень часто реализация системы АСУДД не обходится без проектирования опорных конструкций под оборудование АСУДД (информационные табло, управляемые дорожные знаки), как правило это опорные металлоконструкции П-образного, Ш-образного и Г-образного исполнения.

Невозможна работа системы АСУДД без создания линии связи для взаимодействия периферийного оборудования и без создания кабельных линий для питания оборудования.

Так же при разработке систем АСУДД часто применяется транспортное моделирование , что позволяет проверить наглядно целесообразность установки системы еще на периоде зарождения, средствами компьютерных технологий.

Различные типы систем АСУДД применяются по всей России как в городской среде, так и на загородных - Федеральных трассах и на крупных промышленных территориях.

Необходимость создание системы АСУДД

В условиях современного быстрорастущего трафика автотранспорта, применение и создание системы АСУДД необходимо везде, где присутствуют транспортные потоки. Это необходимо как для регулирования транспортных потоков так и для сбора аналитических и статистических данных для создания в перспективе новых путей объезда проблемных участков (создание дорожно-транспортной инфраструктуры) - создание новых дорог и съездов , что позволяет предупредить образование заторов при постоянном росте количества автотранспорта.

Предоставляем следующие услуги по проектированию и строительству:

  • Новые автоматизированные системы управления дорожным движением (АСУДД);
  • Модернизация и реконструкция существующих систем АСУДД;
  • Временные системы АСУДД;
  • Системы АСУДД на промышленных территориях;
  • Автономные системы АСУДД;
  • Интеграция системы АСУДД в интеллектуальную транспортную систему (ИТС);
  • Строительство систем АСУДД любого типа и сложности.

Каждая автоматизированная система управления дорожным движением, спроектированная и реализованная нашими специалистами, являет собой уникальный объект, для воплощения в жизнь которого необходимо проведение предельно точных расчетов, анализа транспортной ситуации и поиска наиболее удачных технических решений. Какие цели достигаются во время активного внедрения подобной системы?

  • сводится к минимуму время задержки автомобильного транспорта на перекрестках, уменьшается количество вынужденных остановок в заторах, а также сокращаются затраты горючего;
  • увеличиваются средняя скорость дорожного потока и пропускная способность городской транспортной сети;
  • обеспечивается безопасность для всех участников дорожного движения.

Монтаж АСУДД - это современный метод борьбы с заторами, дорожно-транспортными происшествиями и прочими отрицательными последствиями роста количества машин на дорогах мегаполисов. Опыт и практические навыки специалистов компании PRIMECAD позволяют спроектировать и провести установку системы любого уровня сложности, а также осуществить ее обслуживание или модернизацию в полном соответствии с требованиями заказчика.

Преимущества наших АСУДД

  • Адаптивность к дорожной ситуации. Благодаря высокому уровню автоматизации, АСУДД способна подстраиваться под конкретную городскую обстановку - регулировать время работы светофоров, определять оптимальные направления движения и т.п.
  • Возможность оперативной модернизации. Система характеризуется достаточной гибкостью, что позволяет изменять набор ее компонентов в соответствии с текущими требованиями.
  • Соответствие современным требованиям безопасности. Оборудование контролируется дистанционно посредством высокопроизводительных программных комплексов, исключающих влияние человеческого фактора.

«Организация дорожного движения на уровне служб дорожного движения представляет комплекс инженерных и организационных мероприятии на существующей улично-дорожной сети, обеспечивающих безопасность и достаточную скорость транспортных и пешеходных потоков. К числу таких мероприятий относится управление дорожным движением, которое, являясь составной частью организации движения, как правило, решает более узкие задачи. В общем случае под управлением понимается воздействие на тот или иной объект с целью улучшения его функционирования. Применительно к дорожному движению объектом управления являются транспортные и пешеходные потоки. Частным видом управления движением является регулирование (от латинского слова regulare - подчинить определенному порядку, правилу, упорядочивать), т.е. поддержание параметров движения в заданных пределах.
С учетом того, что регулирование является лишь частным случаем как управления, так и организации движения, а целью применения технических средств является реализация ее схемы, в учебнике используется термин технические средства организации движения или технические средства управления движением. Это соответствует принятой в настоящее время терминологии, зафиксированной в нормативных документах и названию учебной дисциплины «Организация дорожного движения», логическим продолжением которой являются изложенные в данном учебнике материалы.
Вместе с тем термин регулирование в силу сложившейся традиции получил распространение. Например, в Правилах дорожного движения перекрестки и пешеходные переходы, оборудованные светофорами, называются регулируемыми в отличие от нерегулируемых, где светофоры отсутствуют. Существуют также термины цикл регулирования, регулируемое направление и т. п. В специальной литературе перекресток, оборудованный светофорами, называется светофорным объектом. С учетом этого обстоятельства в учебнике применительно к каждому конкретному случаю использованы термины, получившие наибольшее распространение, и поэтому наиболее понятные читателю.
Сущность управления движением заключается в том, чтобы обязывать водителей и пешеходов, запрещать или рекомендовать им те или иные действия в интересах обеспечения скорости и безопасности. Оно осуществляется путем включения соответствующих требований в Правила дорожного движения, а также применением комплекса технических средств и распорядительными действиями инспекторов дорожно-патрульной службы и других лиц, имеющих соответствующие полномочия.
Объект управления, комплекс технических средств и коллективы людей, вовлеченные в технологический процесс управления движением, образуют контур управления. Поскольку часть функций в контуре управления часто выполняется автоматическим оборудованием, сложилось употребление терминов автоматическое управление или системы управления.
Автоматическое управление осуществляется без участия человека по заранее заданной программе, автоматизированное - с участием человека-оператора. Оператор, используя комплекс технических средств для сбора необходимой информации и поиска оптимального решения, может корректировать программу работы автоматических устройств. Как в первом, так и во втором случае в процессе управления могут быть использованы ЭВМ. И, наконец, существует ручное управление, когда оператор, оценивая транспортную ситуацию визуально, оказывает управляющее воздействие на основе имеющегося опыта и интуиции. Контур автоматического управления может быть как замкнутым, так и разомкнутым.
При замкнутом контуре существует обратная связь между средствами и объектом управления (транспортным потоком). Автоматически она может осуществляться специальными устройствами сбора информации - детекторами транспорта. Информация вводится в устройства автоматики, и по результатам ее обработки эти устройства определяют режим работы светофорной сигнализации или дорожных знаков, способных по команде менять свое значение (управляемые знаки). Такой процесс получил название гибкого или адаптивного управления.
При разомкнутом контуре, когда обратная связь отсутствует, управляющие светофорами устройства - дорожные контроллеры (ДК) переключают сигналы по заранее заданной программе. В этом случае осуществляется жесткое программное управление.
В соответствии со степенью централизации можно рассматривать два вида управления: локальное и системное. Оба вида реализуются вышеописанными способами.
При локальном управлении переключение сигналов обеспечивает контроллер, расположенный непосредственно на перекрестке. При системном контроллеры перекрестков, как правило, выполняют функции трансляторов команд, поступающих по специальным каналам связи из управляющего пункта (УП). При временном отключении контроллеров от УП они могут обеспечивать и локальное управление. Оборудование, расположенное вне управляющего пункта, получило название периферийного (светофоры, контроллеры, детекторы транспорта), на управляющем пункте - центрального (средства вычислительной техники, диспетчерского управления, устройства телемеханики и т. д.).
На практике применяют термины - локальные контроллеры и системные контроллеры. Первые не имеют связи с УП и работают самостоятельно, вторые такую связь имеют и способны реализовать локальное и системное управление.
При локальном ручном управлении оператор находится непосредственно на перекрестке, наблюдая за движением транспортных средств и пешеходов. При системном он располагается в управляющем пункте, т. е. вдали от объекта управления, и для обеспечения его информацией об условиях движения могут быть использованы средства связи и специальные средства отображения информации. Последние выполняют в виде светящихся карт города или его районов - мнемосхем, устройств вывода с помощью ЭВМ графической и алфавитно-цифровой информации на электронно-лучевую трубку - дисплеев и телевизионных систем, позволяющих непосредственно наблюдать за контролируемым районом.
Локальное управление чаще всего применяется на отдельном или, как говорят, изолированном перекрестке, который не имеет связи с соседними перекрестками ни по управлению, ни по потоку. Смена сигналов светофоров на таком перекрестке обеспечивается по индивидуальной программе независимо от условий движения на соседних перекрестках, а прибытие транспортных средств к этому перекрестку носит случайный характер.
Организация согласованной смены сигналов на группе перекрестков, осуществляемая в целях уменьшения времени движения транспортных средств в заданном районе, называется координированным управлением (управлением по принципу «зеленой волны» - ЗВ). В этом случае, как правило, используется системное управление.
Любое устройство автоматического управления функционирует в соответствии с определенным алгоритмом, который представляет собой описание процессов переработки информации и выработки необходимого управляющего воздействия. Применительно к дорожному движению перерабатывается информация о параметрах движения и определяется характер управления светофорами, воздействующими на транспортный поток. Алгоритм управления технически реализуется контроллерами, переключающими сигналы светофоров по предусмотренной программе. В автоматизированных системах управления с использованием ЭВМ алгоритм решения задач управления реализуется также в виде набора программ ее работы.