Двигатель

Выключения света с помощью пульта схема. Оптический бесконтактный выключатель освещения своими руками

Замечания:

Для управления этим универсальным выключателем можно использовать любую кнопку на любом пульте ДУ. Кнопку нужно удерживать нажатой примерно полторы секунды (определяется цепочкой R3 и C2), после чего сработает реле. Схема будет находиться во включенном состоянии до получения сигнала сброса. Сбрасывается схема кратковременным нажатием любой кнопки на пульте ДУ.

Например, чтобы воспользоваться этим выключателем во время просмотра телепередачи, вы можете нажать и удерживать кнопку на пульте ДУ. Чтобы на телевизоре не переключились от этого каналы или режимы работы, пользуйтесь кнопкой выбора того же канала, который смотрите сейчас. К контактам можно подключать любую нагрузку допустимую по напряжению и силе тока для данного реле.

Работа схемы:

Модулированные импульсы инфракрасного излучения принимаются и буферизуются модулем ИК приемника IC1, который можно заменить микросхемой TSOP1738. Выходные сигналы IC1 имеют стандартный ТТЛ уровень. Резистор R1 поддерживает высокий уровень на выходе микросхемы в отсутствие сигнала. С выхода IC1 сигнал поступает на два КМОП инвертора. Один из них управляет светодиодом LED1, который индицирует работу выключателя. Вторая микросхема выполняет роль буфера, к выходу которой подключена времязадающая цепочка R3, C2, R4 и D1. Конденсатор C2 заряжается через резистор R3, а разряжается через R4. Диод D1 защищает от быстрого разряда через низкое выходное сопротивление инвертора. Если в схеме используется TSOP1738, то сопротивление резистора R4 следует увеличить до 470 кОм.

Время, требуемое на заряд конденсатора, определяется произведением величины сопротивления на емкость конденсатора, которое принято называть постоянной времени цепи (RC). За время, равное единице RC, конденсатор заряжается только до 63% напряжения питания. Для заряда до 99% требуется время 5.RC. В данной схеме напряжение заряда конденсатора должно достигнуть порога переключения КМОП инвертора. При напряжении питания 5 В, уровень переключения КМОП микросхемы равен 3.6 В. Этого уровня напряжение на конденсаторе достигает за время 3.RC, что составляет примерно полторы секунды. Когда переключится инвертор, он запустит генератор импульсов на таймере 555.

Результаты spice-моделирования показывают форму принимаемых импульсов, напряжений на интегрирующей цепочке и выходных импульсов на следующей диаграмме:

Обратите внимание, что на диаграмме показан всего лишь результат моделирования, который не совсем точно отражает форму напряжений в реальной схеме.

Как видно на диаграмме, после буфера импульсы имеют зубчатые выбросы. Для удаления этих выбросов, обусловленных модуляцией ИК несущей передаваемым сигналом, на таймере 555 собран одновибратор, длительность импульса которого определяют компоненты R5 и C4. Очищенный от выбросов выходной сигнал таймера поступает на D-триггер IC4, выполненный на ТТЛ микросхеме 7474. Можно использовать любые разновидности триггера, например, из серии Шоттки 74LS74, быстродействующую 74HCT74 и т.п. Входной сигнал поступает на тактовый вход триггера, а обратная связь с инверсного выхода подается на вход данных, выводы «сброс» и «установка» должны быть заземлены. Каждый приходящий от таймера 555 импульс перебрасывает D-триггер в противоположное состояние, и соответственно, включает/выключает исполнительное реле. Обратите внимание, что быстрое переключение реле в данной схеме невозможно. Выходной импульс таймера длится около 2.4 с, а задержка входного импульса цепочкой R3, C2 порядка 1.5 с.

Перечень компонентов:

220 кОм или 470 кОм
при использованииTSOP1738

ИК приемник TSOP1838 или аналогичный

SN74HCT74 или SN74LS74

Обмотка 12 В, переключающие контакты

Данный вид освещения активно применяется в жилых, офисных и даже производственных помещениях. Наибольшую популярность сегодня получили системы контроля реализованные с помощью радиовыключателей, датчиков движения, контроллеров с пультами управления, смартфонов и компьютеров. Современные технологии позволяют управлять или на придомовом участке, будучи, находясь за сотни километров от них. Некоторые из них будут рассмотрены в статье.

Преимущество дистанционного управления

Использование устройств дистанционного управления позволяет решить ряд задач:

  • Экономно расходовать электроэнергию;
  • Сделать процесс включения/отключения светильников максимально комфортным;
  • Обезопасить свой дом или квартиру от посягательств злоумышленников (эффект присутствия).

Виды дистанционного управления

Дистанционное включение света бывает проводным и беспроводным, ручным и автоматическим, с возможностью манипулирования светом с устройств, работающих по принципу излучения и приема волн определенных частот: инфракрасным, микроволновым, радиочастотным, звуковым, ультразвуковым, голосовым (управление конкретными командами). В этой статье подробно остановимся на управлении освещением с помощью различного типа излучений, голосовых и звуковых команд.

Инфракрасное и радиоволновое управление светом с пульта

Инфракрасное управление освещением с использованием пульта применяется крайне редко. В основном подобные системы работают по принципу передачи сигнала по радиоканалу. Для возможности манипулирования световыми приборами с помощью ИК-луча в разрыв цепи подключается блок дистанционного управления освещением, например BM8049M. Он позволяет включать и выключатель лампу обычным пультом от телевизора. Для этого на блок наводят пульт, жмут любую клавишу (которая не используется для переключения каналов), после чего команда записывается в памяти и теперь контролировать включение света можно, не вставая с дивана.

Главные недостатки использования ИК-пультов дистанционного управления светом – необходимость в их точном наведении на приемник сигнала, так как они работают только в пределах прямой видимости, и малая дальность действия луча, но в этом случае можно использовать ретрансляторы.

Гораздо большее распространение получили системы управления светом с помощью пульта, в которых сигнал передается с устройства управления на контроллер, регулирующий процесс включения/выключения света на определенной радиочастоте.

Управление светом по радиоканалу более востребовано по нескольким причинам:

  • Возможность управления светом не только пульта, но также компьютера, смартфона и прочих устройств;
  • Радиус действия сигнала – около 100 метров при отсутствии препятствий, 15-25 метров при наличии заграждений;
  • Возможность установки усилителей сигнала и ретрансляторов для лучшей передачи команд с устройства управления.

Система дистанционного управления освещением по радиоканалу с помощью пульта состоит из:

  • Пульта;
  • Аккумулятора;
  • Контроллера дистанционного управления, подключаемого к сети и нагрузке.

Устанавливают контроллер в стену или стакан люстры (смотрите фото). Им можно управлять лампами накаливания, компактными и обычными люминесцентными, галогенными, светодиодными лампами, причем не только единичными светильниками, но и их группой.

Обзор блоков дистанционного управления освещением, китайского производства, при помощи пульта, по радиоканалу, видео:

Дистанционное управление светом с помощью инфракрасных и радиовыключателей

Инфракрасные выключатели – редкость на рынке светотехники, так как разумнее управлять светом с использованием радиоустройств. Один из самых популярных выключателей – "Сапфир" компании Ноотехника (Беларусь). Эта же компания выпускает множество устройств управления освещением по радиоканалу, в том числе упомянутые ниже. Управляется выключатель любым пультом, например, телевизионным или вручную. Принимает сигналы приемник, расположенный внутри устройства на сенсорной панели. Выключатель света с пультом дистанционного управления представлен на фото.

Обзор ИК-выключателя "Сапфир", видео:

Выключатель света с дистанционным управлением располагают в любом удобном для себя месте, силовые блоки – в распределительной коробке или стакане люстры.

Пример "привязки" блока управления освещением к радиовыключателю, видео:

Использование датчиков для управления освещением

На рынке светотехники широко представлены различные датчики движения, для дистанционного управления освещением. Наиболее распространенные из них – инфракрасные. Они представляют собой устройства, замыкающие или размыкающие цепь освещения при увеличении уровня инфракрасного излучения в зоне их "видимости". Как только в поле действия датчика попадает человек или животное, температура тела которых выше температуры фона – свет включается. Как только человек покидает зону действия датчика или несколько секунд находится в неподвижном положении – свет отключается. Монтируются датчики движения чаще всего в подъездах, над входной дверью, реже – внутри квартиры.

Недостатки и преимущества инфракрасных датчиков

К недостаткам использования датчиков движения относят возможность ложных срабатываний (реакция на теплый воздух, солнечные лучи), ухудшение работы на улице из-за атмосферных осадков, отсутствие срабатывания прибора в случае, когда одежда человека не пропускает инфракрасное излучение, постоянное выключение света через 10-15 секунд, как только двигательная активность снижается.

К преимуществам датчиков относят возможность контроля потребления электрической энергии и как следствие снижения денежных затрат, безопасность для здоровья человека, удобство использования.

Подключение датчиков движения не вызывает трудностей, очень часто встречается схема монтажа, представленная ниже. Для ее реализации необходим трехжильный провод, которым устройство управления освещением запитывается от сети и соединяется с нагрузкой. Фазный провод сети подключается к фазному проводу датчика. Нулевые проводники светильника, сети питания и датчика соединяются вместе. Светильник фазным проводом соединяется с оставшимся проводом датчика.

Выбор инфракрасных датчиков движения

При выборе ИК-датчиков обращают внимание на следующие параметры:

  • Место применения. Датчики выпускаются со степенями защиты от IP20 до IP 55 и бывают выстраиваемыми и навесными. Для использования в квартире выгоднее смотрится встраиваемый датчик, а степень защиты практически не играет роли. Для установки устройства на улице или в подъезде лучше выбрать модель с защитой от пыли и воды, устанавливаемую на кронштейне;
  • Максимальная дальность действия. ИК-датчики улавливают изменение температуры фона на расстоянии 10-20 метров. Те из них, которые планируется установить на улице должны иметь больший радиус "охвата". В помещении этот параметр ни к чему;
  • Угол обнаружения. В вертикальной плоскости угол обзора датчиков – 15-20 градусов, в горизонтальной – от 60 до 360 градусов;
  • Мощность нагрузки. Перед покупкой датчика надо знать мощность подключаемой к нему нагрузки и выбирать устройство по этим показателям с запасом.

Использование других датчиков движения для управления светом

Кроме инфракрасных регуляторов для управления освещением иногда применяются микроволновые, звуковые и ультразвуковые, а также комбинированные датчики.

Микроволновые датчики

Микроволновые датчики работают по принципу излучения и приема электромагнитных волн. В обычном режиме частота и длина излучаемых и отраженных от объектов волн одинакова. Когда в зону действия датчика попадает человек, эти параметры изменяются, после чего активируется механизм коммутации световой цепи. Преимущества микроволновых датчиков в том, что они являются высокоточными устройствами, отлично работают даже при плохой погоде, а недостатки – возможность ложных срабатываний, высокая цена, вредное излучение у датчиков с большим радиусом охвата.

Ультразвуковые датчики

Ультразвуковые датчики по принципу работы схожи с микроволновыми датчиками. Внутри этих устройств установлен генератор звуковых волн, частотой от 20 до 60 килогерц, которые излучаются и отражаются от объектов, расположенных в поле действия датчика. При попадании человека или животного в радиус охвата, частота приходящих на датчик звуковых волн меняется, что прибор сразу же регистрирует. Недостатки ультразвуковых датчиков: могут не среагировать на плавное перемещение, вызывают дискомфорт у животных. Преимущества датчиков: невысокая стоимость, работают в условиях повышенной влажности, изменения температуры, реагируют на движение независимо от того, одежда из какого материала на человеке.

Комбинированные датчики

Комбинированные датчики совмещают в себе несколько технологий обнаружения движения. Они могут использовать микроволновое и ультразвуковое излучение или инфракрасное и микроволновое. Такие устройства наиболее качественно выполняют поставленные перед ними задачи.

Звуковые датчики

Звуковые датчики реагируют на резкое изменение звука, уровень которого устанавливается путем изменения чувствительности датчика. Чаще всего включают и отключают свет хлопком в ладоши. Разновидностью звуковых датчиков можно считать и голосовые выключатели.

Голосовое управление светом

Голосовое управление световыми приборами в квартире реализуется с помощью голосовых датчиков-выключателей, часто используемых в системах "Умный дом", а также компьютеров или смартфонов на которых установлена специальная программа.

Выключатели света с дистанционным управлением (голосовые) делятся на два типа: с необходимостью настройки и без нее. В первом случае нужно обучить устройство командам активации, включения и выключения света, во втором случае все команды уже прописаны в памяти и указаны в инструкции, надо только использовать их для управления. Часто подобными выключателями можно управлять не только голосом, но и любым пультом. К таковым относятся "Жако" и "Серви". Ознакомиться с особенностями их работы можно на сайтах производителей.

Дистанционное управление на ИК лучах вторглось в повседневную жизнь и значительно экономит наше время. К сожалению, оборудованы ДУ далеко не все электроприборы, в частности и выключатели освещения. Предлагаемое устройство поможет сделать управление ими более удобным.

Выключателем управляют с помощью передатчика ИК импульсов (пульта), по команде которого выключенная в момент ее подачи осветительная лампа будет включена, и наоборот. В прибор встроен дополнительный ИК передатчик, что избавляет от необходимости постоянно носить пульт с собой или тратить время на его поиски. Достаточно поднести к выключателю руку на расстояние приблизительно десять сантиметров и он сработает.

Выключатель реагирует на импульсное ИК излучение, не расшифровывая содержащийся в нем код. Поэтому подойдет любой пульт ДУ от импортного или отечественного электронного прибора(например,телевизора), причем нажимать можно на кнопку любой команды. Можно сделать и самодельный пульт, например, по схеме, приведенной в статье Ю. Виноградова "ИК датчик в охранной сигнализации" ("Радио", 1996, № 7, с. 42, рис. 2). Там же можно найти чертеж печатной платы и рекомендации по изготовлению устройства.

Схема самого простого варианта пульта управления показана на рис. 1. Это - генератор импульсов на транзисторах разной структуры, нагрузкой которого служит излучающий диод И К диапазона АЛ147А. Генератор питают от трех-четырех гальванических элементов, команду подают кратковременным нажатием на кнопку SB 1.

Схема выключателя показана на рис. 2. Приемник ИК импульсов собран по схеме подобной применяемой в блоках управления телевизоров "Рубин" и "Темп". На транзисторах VT1 - VT4 собран усилитель импульсов, в которые преобразует принятое ИК излучение фотодиод VD1 - ФД265 или любой другой, чувствительный к ИК лучам. Далее принятый сигнал проходит через активный фильтр с двойным Т-мостом, собранный на транзисторе VT5. Фильтр устраняет помехи от осветительных ламп, излучение которых захватывает ИК область спектра и промодулировано удвоенной частотой сети переменного тока. Возможное иногда самовозбуждение этого фильтра устраняют заменой транзистора другим, с меньшим значением h21Э.

(нажмите для увеличения)

Отфильтрованный сигнал, пройдя через усилитель-ограничитель на транзисторе VT6 и элементе DD1.1, поступает на накопитель (диод VD4 и цепь R19C12). Параметры элементов накопителя выбраны таким образом, что конденсатор С12 успевает зарядиться до уровня срабатывания элемента DD1.2 только за три-шесть принятых импульсов. Это предотвращает срабатывание выключателя от одиночных световых импульсов: фотографических ламп-вспышек, грозовых разрядов. Разрядка конденсатора С12 занимает 1...2 с.

Узел на логических элементах DD1.2, DD1.3, DD1.6, благодаря обратной связи через конденсатор С13, формирует импульсы с крутыми перепадами уровня, поступающие на счетный вход триггера DD2. С каждым из них триггер изменяет состояние. При лог. 1 на выводе 1 триггера открыты транзисторы VT9, VT10 и тринистор VS1. Цепь лампы EL1 замкнута, освещение включено. Свечение двуцветного светодиода HL1 - зеленое. В противном случае (лог. 1 на выводе 2 триггера) освещение выключено, свечение светодиода HL1 - красное. В это же состояние приводит триггер импульс, формируемый цепью C19R24. Таким образом устраняют самопроизвольное включение освещения после перебоя в подаче электроэнергии.

Встроенный ИК передатчик - собранный на элементах DD1.4, DD1.5 генератор импульсов частотой 30...35 Гц - позволяет пользоваться выключателем, не имея в руках пульта ДУ. Излучающий диод ВI1 установлен рядом с фотодиодом VD1, но отделен от него светонепроницаемой перегородкой. Излучение диода ВI1 направлено в ту сторону, откуда фотодиод его принимает. Выключатель должен срабатывать от ИК импульсов встроенного передатчика, отраженных от ладони, поднесенной на расстояние 5...20 см. Необходимую для этого мощность излучаемых импульсов устанавливают, изменяя номинал резистора R20.

(нажмите для увеличения)

Преимущество данного бесконтактного выключателя в отличие от других схем , например, состоит в том, что им можно включать и выключать освещение или же любую другую нагрузку бесконтактным способом то есть, не прикасаясь своими руками непосредственно к устройству.

Осуществлять управление освещением можно двумя разными путями. Первый, поднеся руку непосредственно к оптическому датчику данного выключателя на расстоянии 10 сантиметров. Второй, посредством любого типового пульта дистанционного управления использующий в своей работе модулированное инфракрасное излучение.

Простой взмах рукой либо нажатие на произвольную кнопку ПДУ и бесконтактный выключатель меняет свое состояние на противоположное. В случае сбоя в электросети и при возобновлении электроснабжения, оптический выключатель света будет находиться в выключенном состоянии.

Повысив силу излучения инфракрасного светодиода, выполняющего роль оптического датчика, можно добиться увеличения дальности действия срабатывания устройства. В этом случае, к примеру, устройство может оповещать охрану о подъезде автомобиля к пропускному пункту.

Описание работы оптического бесконтактного выключателя.

В схеме применена всего одна интегральная микросхема К561ТМ2, имеющая в своем составе два D-триггера. На первом триггере DD1.1 собран мультивибратор, создающий прямоугольные импульсы в диапазоне 35…40кГц. Подстройка частоты осуществляется путем подбора сопротивлений R1 и R2.

Данные импульсы, пройдя сквозь токоограничивающий резистор R3, поступают на ИК-светодиод HL1. Можно применить любой подходящий ИК-светодиод, к примеру, такой который используется в ПДУ. Совместно с фотодатчиком они создают оптическую схему, которая срабатывает при отражении инфракрасного излучения.

Для предотвращения ложных срабатываний между фотодатчиком и ИК-светодиодом, необходимо проложить непрозрачную перегородку, а так же они должны быть обращены в сторону, куда подносят руки. Схема запитана от собранного на диодном мосте VD4, гасящем резисторе R7 и стабилитроне VD3 на 4.7В. Конденсатор C5 предназначен для фильтрации выпрямленного напряжения.

В момент подачи напряжения на бесконтактный выключатель освещения, через резистор R5 идет зарядка конденсатора C4. В результате этого на вход триггера DD1.2 поступает импульс, из-за которого на инверсном его выходе 2 появляется уровень лог.0. транзистор VT1 закрыт и лампа не горит.

Так же после подачи питания на схему оптического выключателя, начинает генерировать импульсы. Приблизительная частота их составляет 38 кГц, и соответственно светодиод испускает излучение с такой же частотой. Если теперь поднести руку к окошку, где расположен оптический блок выключателя, то отраженный луч от руки попадет на фотоприемник. На его выходе образуется низкий уровень напряжения, убрав руку, вновь появляется высокий уровень. Таким образом, формируется импульс, который поступая на вход 3 триггера DD1.2 переключает его в противоположное состояние, тем самым включая освещение.

Для обеспечения четкого переключения триггера добавлена цепь из элементов R6 и C3, обеспечивающая некоторую задержку переключения.

Всем привет! Здесь мы поговорим о том, как сделать самое простое ИК управление (). Управлять этой схемой можно даже обычным пультом от телевизора. Предупреждаю сразу, дистанция не велика - примерно 15 сантиметров, но даже такой результат обрадует новичка в работе. При самодельном передатчике дальность величивается в два раза, то есть примерно возрастает еще на 15 сантиметров. Делается блок ДУ просто. К 9-ти вольтовой "кроне" подключаем ИК светодиод через резистор в 100-150 ом, при этом ставим обычную кнопку без фиксации, приклеиваем это к батарейке изолентой, при этом изолента не должна препятствовать инфракрасному излучению ИК светодиода.

На фото показаны все те элементы, что нам понадобятся для сборки схемы

1. Фотодиод (можно почти любой)
2. Резистор на 1 ком, и на 300-500 ом (Для наглядности на фото выставил резисторы на 300 и 500 ом)
3. Подстроечный резистор на 47 ком.
4. Транзистор КТ972А или аналогичный по току и структуре.
5. Светодиод использовать можно любой низковольтный.

Принципиальная схема приёмника ИК управления на одном транзисторе:


Приступим к изготовлению фотоприемника. Его схема была взята из одного справочника. Сначала рисуем плату перманентным маркером. Но можно сделать это даже навесным монтажем, но желательно делать на текстолите. Моя плата выглядит так:


Ну теперь, естественно, приступаем к пайке элементов. Паяем транзистор:



Припаиваем резистор в 1 кОм (Килоом) и построечный резистор.


И наконец паяем последний элемент - это резистор на 300 - 500 Ом, я поставил 300 Ом. Разместил его с обратной стороны печатной платы, т.к он мне не позволил припять его с лицевой стороны, из-за своих мутационных лап =)


Все это дело чистим зубной щеткой и спиртом, дабы смыть остатки канифоли. Если всё собрано без ощибок и фотодиод исправный - заработает сразу. Видео работы данной конструкции можно посмотреть ниже:

На видеоролике дистанция маленькая, так как надо было смотреть одновремено и в камеру, и на пульт. Поэтому не смог сфокусировать направления пульта. Если вместо фотодиода поставить фоторезистор, то будет реагировать на свет, проверенно лично, чувствительность даже лучше, чем в оригинальных схемах фоторезистора. На схему подавал 12в, работает нормально - светодиод горит ярко, регулируется яркость и чувствительность фоторезистора. В настоящее время по этой схеме подбираю элементы, чтобы можно было питать ИК приёмник от 220 вольт, и выход на лампочку тоже был 220В. За предоставленную схему отдельное спасибо: thehunteronghosts . Материал предоставил: