Стойка

Схема морфологического описания цветкового растения. Анатомо-морфологическое описание растений

План морфологического описания цветкового растения


1. Общая характеристика растения:
1.1. Жизненная форма растения (дерево, кустарник, кустарничек, травянистое растение)
1.2. Длительность жизни растения (многолетнее, однолетнее)
1.3. Высота растения (в см)
1.4. Характер опушения (растение опушенное или голое)
2. Корневая система (стержневая, мочковатая); видоизменения корней (корневые клубни и т.д.)
3. Стебель:
3.1. Направление роста (прямостоячий, приподнимающийся, лежачий, ползучий, цепляющийся, вьющийся)
3.2. Листорасположение (очередное, супротивное, мутовчатое)
4. Видоизменения побегов: корневища, клубни, луковицы (укажите размеры)
5. Лист:
5.1. Тип листа
- (простой или сложный, если сложный, то уточните: тройчатосложный, пальчатосложный, перистосложный, дваждыперистосложный и т.д.)
- сидячий или черешковый
- с прилистниками или без
- наличие влагалища, раструба, усиков, колючек
5.2. Жилкование листа (дуговое, параллельное, пальчатосетчатое, перистосетчатое)
5.3. Форма листовой пластинки (округлая, овальная, яйцевидная, обратнояйцевидная и т.д.), форма основания (клиновидное, округлое, сердцевидное и т.д.) и верхушки листа (тупая, острая, заостренная, выемчатая и т.д.), степень рассеченности (цельная, лопастная, раздельная, рассеченная)
6. Цветок и соцветие:
6.1. Цветки одиночные или собраны в соцветия; если собраны в соцветия – указать тип соцветия; отметить, есть ли при соцветии кроющий лист
6.2. Окраска чашечки и венчика
6.2. Формула цветка
6. Плоды и семена (если есть):
6.1. Тип плода
7. Название семейства, рода и вида (русское и латинское).

Описание и составление формулы цветка

1. определите тип симметрии цветка (зигоморфный, актиноморфный, асимметричный) - зигоморфный цветок (с одной осью симметрии) * - актиноморфный цветок (с несколькими осями симметрии)

2. определите тип околоцветника (простой или двойной – состоящий из чашечки и венчика), отметьте цвет околоцветника

3. определите число долей околоцветника, сросшиеся они или свободные, в скольких кругах расположены, находятся ли в одном круге околоцветника разные по форме листочки (лепестки или чашелистики)Ca – чашечка (calyx) Co – венчик (corolla) P – простой околоцветник (perigonium) Число долей записывают в виде нижнего индекса при условном обозначении: P 4 – простой околоцветник из четырех свободных листочков, расположенных в одном круге

P (6) – простой околоцветник из четырех сросшихся листочков, расположенных в одном круге
P 3+3 – простой околоцветник из шести свободных листочков, расположенных в двух кругах
Если околоцветник двойной:
Ca (5) Co 5 – двойной околоцветник с чашечкой из пяти сросшихся чашелистиков и венчиком из пяти свободных лепестков
Co 1,2,2 – венчик из пяти свободных лепестков, различающихся по форме

1. определите число тычинок, в скольких кругах они расположены, срастаются ли между собойA A – андроцей, число тычинок неопределенно велико

2. определите число плодолистиков и тип гинецеяG – гинецей – совокупность плодолистиков (gynoeceum) завязь верхняя – подчеркивание снизу завязь нижняя – черта сверху G (3 ) – гинецей из трех сросшихся плодолистиков, завязь верхняя

Пример формулы цветка:
*P 3+3 A 3+3 G (3 ) = цветок актиноморфный, околоцветник простой, из шести свободных листочков, расположенных в двух кругах; андроцей из шести тычинок, расположенных в двух кругах; гинецей синкарпный, из трех сросшихся плодолистиков, завязь верхняя.
Условные обозначения при составлении формулы цветка

Ca – чашечка (calyx)
Co – венчик (corolla)
P – простой околоцветник (perigonium)
() – срастание элементов цветка
A – андроцей – совокупность тычинок (androeceum)
G – гинецей – совокупность плодолистиков (gynoeceum)
завязь верхняя – подчеркивание снизу
завязь нижняя – черта сверху
Например: G (3 ) – гинецей из трех плодолистиков,
завязь верхняя

Зигоморфный цветок (с одной осью симметрии)
* - актиноморфный цветок (с несколькими осями симметрии)

- тычиночный цветок
- пестичный цветок

∞ - множественность элементов цветка
+ - расположение органов цветка в нескольких кругах

Название семейства, рода и вида (русское и латинское)
Латинское название приводится с фамилией автора, сделавшего первое описание вида.
Например: Семейство Сложноцветные – Asteraceae
Одуванчик лекарственный – Taraxacumofficinale Wigg.
род вид автор

Цветы розы недаром считаются символом красоты и любви. Их нежные лепестки и пышные бутоны гармонично сочетаются с крепкими стеблями, покрытыми острыми шипами. Этот представитель рода Шиповник очень популярен. Он относится к семейству Розоцветных и растёт в виде разветвлённого кустарника. Многие садоводы, помимо овощных культур, выращивают на своих участках такие растения.

Историческая справка

Розу называют царицей цветов, о её существовании знает каждый взрослый и даже ребёнок. Она является очень древним растением, первые упоминания о ней можно найти в летописях второго тысячелетия до нашей эры. А также информацию о розе можно встретить в древнеиндийских источниках, но её родиной считается Персия. Цветки с белыми бутонами персы считали подарком Аллаха. Некоторые историки предполагают, что роза получила своё название в честь острова Родос, где впервые была обнаружена.

Первыми этот цветок стали выращивать римляне в V веке . Древнеримские писатели воспевали его красоту в своих трудах. Во время правления династии Каролингов розу использовали как лекарственное растение, но также отмечали её исключительные декоративные качества.

Как садовую культуру такие цветы стали выращивать более 5 тысяч лет назад, что подтверждают археологические находки. В эпоху Средневековья мужчины дарили своим дамам алые розы, ведь в то время они являлись символами любви.

Самым древним представителем роз считается вид, растущий в Германии. Эти растения можно встретить на территории Хильдесхаймского собора Святой Марии. Их называют тысячелетними розами, такие кусты вырастают до 13 метров в высоту, а диаметр ствола равняется 50 сантиметрам.

У этого вида также есть своя история. В ней рассказывается о том, что в 885 году король Людовик заплутал в лесу во время охоты. Не найдя дороги назад, он снял с груди нательный крест и попросил помощи у высших сил. После чего лёг на землю и уснул. За ночь около него расцвёл прекрасный розовый куст. Людовик приказал построить часовню Богоматери на этом месте. Во время Второй мировой войны в результате боевых действий растение сильно обгорело, но в мае 1945 года расцвело вновь.

Мифы и легенды

Известно множество древних преданий, которые объясняют появление такого растения и все они, как ни странно, связаны с великим чувством - любовью .

Древнеримская легенда рассказывает о безответной любви богини Флоры. Она решила создать цветок, который смог бы передать её радость и грусть одновременно. Увидев результат своих трудов, Флора захотела назвать имя купидона, укравшего её сердце, но вместо Эрос смогла произнести только «Рос». Так получилась роза - символ безответных чувств богини юности, растений и весны.

Другой миф гласит, что цветок вышел из пены, которая соприкоснулась с телом Афродиты во время купания. Другие боги решили сделать розу ещё прекрасней и покрыли её нектаром, который придал цветку приятный аромат.

Изначально растение имело белые лепестки, но кровь древнегреческой богини красоты окрасила их в красный цвет. Это получилось из-за того, что Афродита изранила ноги, пока бежала по лесу к своему раненому возлюбленному Адонису.

Морфологическое описание

Первым, кто составил описание и схему строения роз, был древнегреческий ботаник и философ Теофраст. А также он написал научную характеристику дикорастущих и садовых форм, выделил основные правила агротехники. Благодаря селекционерам сегодня цветоводам доступно множество сортовых разновидностей роз, которые были получены в результате тщательного отбора и скрещивания диких видов.

Вечерница матроны, или ночная фиалка, - ароматная красавица

Типичными морфологическими признаками таких растений являются:

Род шиповников считается одним из самых сложных в семействе. В него входят формы роз с шипами и без, крупными и мелкими соцветьями, махровыми и полумахровыми лепестками. Их отличия можно перечислять бесконечно.

В естественной среде дикие розы имеют вид вечнозелёных или листопадных кустарничков и кустарников. Некоторые из них даже напоминают травянистые лианы из-за своих тонких и длинных стеблей, цепляющихся за другие растения или стелящихся по земле.

По размерам кустиков розы делятся на следующие группы:

  • миниатюрные сорта - 15−35 сантиметров;
  • полиантовые - 30−45 сантиметров (некоторые растения могут вырастать до 60 сантиметров);
  • гибридные чайные и флорибунда - 30−90 сантиметров;
  • плетистые - от 2,5 до 6 метров.

А также в зависимости от сортовой принадлежности кусты роз могут иметь различные формы. Все растения подразделяются на такие виды:

  • плетистые:
    • почвопокровные (стелящиеся);
    • цепляющиеся;
  • кустовые:
    • узкопирамидальные;
    • раскидистые.

Некоторые виды обладают не прямостоячими, а очень длинными и тонкими побегами. Они стелются по земле или цепляются за какие-либо опоры с помощью шипов, что позволяет забираться на значительную высоту, например, по стволам деревьев. Самым ярким представителем почвопокровных роз является сорт Бланка.

Плотность кустов зависит от боковых побегов. Ботаники и опытные цветоводы различают розовые кусты по типу ветвления:

  • множество коротких и крепких побегов, направленных в разные стороны (парковые сорта);
  • ветвление происходит только на скелетных ветках, побеги тонкие и короткие (чайные розы и флорибунда);
  • крепкие вторичные побеги немного длиннее, чем у парковых роз (шрабы, ремонтантные разновидности).

Стебли и ветви могут иметь различный окрас. Молодые побеги покрыты зелёной корой, остальные пурпурной или красноватой. На насыщенность окраса в первую очередь влияет солнце, ближе к осени он начинает тускнеть.

Посадка уход и размножение нимфеи в пруду и дома

Шипы и листья

Побеги большинства сортов покрыты шипами, которые отличаются друг от друга размерами и формой. Они служат естественной защитой цветка от травоядных животных и представляют собой наросты, образованные из покровной ткани ветвей и стеблей.

Парковые розы, помимо шипов, покрыты мелкими щетинками, шипиками или волосками. Некоторые сорта, например, бенгальские, почти лишены этого защитного механизма.

По форме шипы делят на такие группы:

Иногда на одном растении можно увидеть шипы, отличающиеся друг от друга формой и размером. Их окрас варьируется и не поддаётся классификации, поэтому его не рассматривают в качестве типичного морфологического признака.

У культурных форм этого растения листья больше, чем у дикорастущих. Каждый листок состоит из нескольких частей (от 3 до 15), прикреплённых к одному черешку. Форма, величина и количество листочков служат характерным признаком определённых сортов. Форма в первую очередь зависит от длины и ширины листовой пластины.

У большинства старых видов листья покрыты пушком, тогда как у современных сортов он отсутствует. Роза ржавчинная обладает необычной листвой, она способна выделять эфирное масло с приятным ароматом. Цветоводы сравнивают его с запахом яблок.

Окрас листвы может быть зелёным, тёмно-зелёным и светло-зелёным. Молодые листики некоторых сортов окрашены в пурпурный или бронзовый цвет. Листья роз делят на группы по текстуре листовых пластин, они бывают:

  • кожистые;
  • матовые;
  • блестящие;
  • полуматовые;
  • полублестящие.

Для некоторых растений эти особенности считаются морфологическими.

Дикорастущие виды чаще всего обладают листвой без блеска, тогда как у большинства современных садовых форм они блестят. Розы с блестящими листьями имеют стойкость к грибковым заболеваниям.

В конце сезона дикие разновидности сбрасывают листву, тогда как многие новые культурные сорта этого не делают, они просто приостанавливают вегетацию.

Цветение и плоды

Соцветия роз могут быть одиночными, малоцветковыми (из 2−3 цветков) или многоцветковыми. Последние отличаются повышенной декоративностью и представляют собой густые зонтиковидные метёлки, состоящие из пяти и более цветков.

По величине различают цветки:

  • мелкие - диаметр меньше 6 см;
  • средние - 6−9 см;
  • крупные - 10−16 см.

А также сорта роз группируют по махровости цветков. Она зависит от количества лепестков. Так, выделяют:

  • густомахровые (Кристалл Фейри) - более 50 штук;
  • махровые (Амулитт) - 20−50 лепестков;
  • полумахровые (Гамбург) - 10−20 штук;
  • простые (Pretty Girl Meidiland) - 5 лепестков.

Цветки диких роз обычно состоят из пяти лепестков и пяти чашелистиков, но также существуют виды с большим количеством лепестков. Некоторые пестики и тычинки трансформируются в дополнительные лепестки. Так получаются махровые и полумахровые цветки.

Существует классификация роз по форме цветов , которые, в свою очередь, могут быть:

  • плоскими;
  • чашевидными;
  • бокаловидными;
  • черепитчатыми;
  • шаровидными;
  • отогнутыми;
  • квадратными.

Растение гортензия метельчатая в Сибири: посадка и уход

Многих начинающих цветоводов интересует какого цвета бывают розы. Современные виды имеют самый разнообразный окрас цветков. Широкую палитру всевозможных оттенков позволили получить многократные скрещивания. Поэтому легче перечислить какого окраса у роз быть не может, а именно синего, зелёного и чёрного. Самые распространённые сорта имеют бутоны красного, жёлтого, розового, белого, оранжевого и темно-бордового цвета.

В свою очередь, дикорастущие формы не могут похвастаться такой цветовой гаммой, среди них преобладает красный и розовый окрас лепестков, реже можно увидеть жёлтые и белые цветки.

Дикорастущие растения начинают цвести первыми, а именно в мае. Но их цветение длится недолго, лишь 15−25 дней. Старые садовые сорта цветут в мае - июне, некоторые из них имеют повторное цветение. Но оно, как правило, слабее первого и не такое пышное. Современные гибриды и сорта цветут два раза в год - в июне и осенью, до самых заморозков.

Аромат цветков может быть слабым, средним и сильным. Большинство видов обладают приятным запахом фруктов, мёда, свежих яблок, реже травы. Китайские розы отличаются чайным ароматом. Роза Фоэтида пахнет довольно неприятно, из-за чего получила второе название - шиповник зловонный.

Опыление роз происходит с помощью ветра и насекомых, в результате чего на растении образуются плоды. Они могут быть мелкого, среднего или крупного размера. По цвету плоды делятся на чёрные, оранжевые и красные, а по форме на круглые, приплюснутые и яйцевидные. Многие виды могут похвастаться обильным урожаем плодов и их красивым видом, из-за чего высоко ценятся в декоративном цветоводстве.

Помимо морфологических признаков, садоводов также интересуют биологические особенности роз, такие как засухоустойчивость, зимостойкость, обильность цветения и другие.

Полезные свойства розы

Благодаря высокому содержанию эфирных масел лепестки роз обладают большим количеством полезных свойств . Розовое масло высоко ценится в парфюмерной и косметологической промышленности, ведь чтобы получить один килограмм этого продукта, нужно переработать почти 3 тонны лепестков.

Такое масло хорошо влияет на нервную систему человека и способно дать успокоительный эффект. А также аромат роз стимулирует работу мозга. В Болгарии под выращивание ценного масленичного сорта отведена целая долина. Болгарская продукция с розовым маслом известна по всему миру.

План морфологического описания цветкового растения

1. Название растения

2. Класс растений: однодольное, двудольное

3. Продолжительность жизни: однолетнее, двулетнее, многолетнее.

4. Жизненная форма: дерево, кустарник, полукустарник, кустарничек, травянистое растение.

5. Наличие органов в данном растении.

6. Подземные органы: тип корневой системы: мочковатая, стержневая. Особенности внешнего строения корней. Наличие видоизмененных корней: корнеплод, корневые клубни.

7. Надземные побеги: особенности строения: укороченные, удлиненные. Видоизменения побега: луковица, корневище, клубень.

Расположение почек и листьев: супротивное, очередное, мутовчатое.

Особенности стеблей: цвет, наличие и особенности чечевичек, пробки, листовые рубцы. Тип стебля: прямостоячий, ползучий, вьющийся, цепляющийся, лежачий, приподнимающийся.

Видоизменения стеблей: колючки, листообразные, запасающие.

Строение почек: цвет, чешуи, размер.

Листья простые или сложные. Наличие видоизменений листа.

Особенности строения листьев: размеры, форма, толщина, цвет. Форма основания, верхушки, край листа.

Жилкование: сетчатое (перистое), параллельное, дуговое. Наличие волосков, воскового покрова.

8. Наличие цветков: размеры, цвет, двойной или простой околоцветник. Количество тычинок, пестиков, лепестков, чашелистиков. Свободные они или сросшиеся. Завязь верхняя или нижняя.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

  • Содержание
    • 1. Морфологические признаки растений
    • 2. Влияние загрязнителей на морфологические свойства растений
    • 3. Индекс биоразнообразия

1 . Морфологические признаки растений

Растения изучают с различных сторон. Исторически возник ряд разделов, каждый из которых решает свои задачи и использует собственные методы исследования. морфология эндогенный корень

Морфология (греч. морфа -- форма; логос -- слово, учение) изучает внешние формы и внутренние структуры, воспринимаемые непосредственно человеческим глазом или с помощью инструментов (лупы, светового или электронного микроскопов). Этот раздел можно также назвать структурной ботаникой. Морфология составляет первоначальную и совершенно необходимую основу для всех других ботанических дисциплин. Поэтому изучение ботаники начинается с морфологии.

Корень -- основной вегетативный орган растения, выполняющий в типичном случае функцию почвенного питания. Корень -- осевой орган, обладающий радиальной симметрией и неопределенно долго нарастающий в длину благодаря деятельности апикальной меристемы. От побега он морфологически отличается тем, что на нем никогда не возникают листья, а апикальная меристема всегда прикрыта чехликом.

Кроме главной функции поглощения веществ из почвы, корни выполняют и другие функции:

а) корни укрепляют («заякоривают») растения в почве, делают возможным вертикальный рост и вынесение побегов вверх;

б) в корнях синтезируются различные вещества (многие аминокислоты, гормоны, алкалоиды и пр.), которые затем передвигаются в другие органы растения;

в) в корнях могут откладываться запасные вещества;

г) корни взаимодействуют с корнями других растений, микроорганизмами, грибами, обитающими в почве.

Перечисленные функции присущи большинству нормально развитых корней. У многих растений корни выполняют особые функции.

Морфологическая природа корней в корневой системе.

Обычно растения обладают многочисленными и сильно разветвленными корнями. Совокупность всех корней одной особи образует единую в морфологическом и физиологическом отношении корневую систему.

В состав корневых систем входят корни различной морфологической природы -- главный корень, боковые и придаточные корни.

Главный корень развивается из зародышевого корешка Боковые корни возникают на корне (главном, боковом, придаточном), который по отношению к ним обозначается как материнский. Они возникают на некотором расстоянии от апекса, обычно в зоне поглощения или несколько выше, акропетально, т. е. в направлении от основания корня к его апексу.

Боковые корни закладываются в определенном отношении к проводящим тканям материнского корня. Чаще всего (но не всегда) они возникают против групп ксилемы и поэтому располагаются правильными продольными рядами вдоль материнского корня.

Эндогенное образование боковых корней (т. е. их заложение во внутренних тканях материнского корня) имеет ясное приспособительное значение. Если бы ветвление происходило в самом апексе материнского корня, то это затрудняло бы его продвижение в почве.

Придаточные корни очень разнообразны, и, пожалуй, их общий признак лишь тот, что эти корни нельзя отнести ни к главным, ни к боковым. Они могут возникать и на стеблях (стеблеродные придаточные корни), и на листьях, и на корнях (корнеродные придаточные корни). Но в последнем случае они отличаются от боковых корней тем, что не обнаруживают строго акропетального порядка заложения вблизи от апекса материнского корня и могут возникать на старых участках корней.

Разнообразие придаточных корней проявляется в том, что в одних случаях место и время их заложения строго постоянны, в других же случаях они образуются только при повреждениях органов (например, при черенковании) и при дополнительной обработке ростовыми веществами. Между этими крайностями существует много промежуточных случаев.

Корневые системы классифицируют также по признаку распределения массы корней по горизонтам почвы. Формирование поверхностных, глубинных и универсальных корневых систем отражает приспособление растений к условиям почвенного водоснабжения.

Побег, как и корень, -- основной орган высшего растения. Вегетативные побеги в типичном случае выполняют функцию воздушного питания, но имеют ряд других функций и способны к разнообразным метаморфозам. Спороносные побеги (в том числе и цветок) специализированы как органы репродуктивные, обеспечивающие размножение.

В современной морфологии растений побег в целом, как производное единого массива верхушечной меристемы, принимают за единый орган того же ранга, что и корень. Однако по сравнению с корнем побег имеет более сложное строение: он с самых ранних этапов развития расчленяется на специализированные части. Вегетативный побег состоит из оси (стебля), имеющей более или менее цилиндрическую форму, и листьев -- в типичном случае плоских боковых органов, сидящих на оси. Ни стебель без листьев (хотя бы зачаточных или рудиментарных), ни листья без стебля (хотя бы укороченного до предела) образоваться не могут. Кроме того, обязательной принадлежностью побега являются почки -- зачатки новых побегов, возникающие, как и листья, в определенном порядке на оси и обеспечивающие длительное нарастание побега и его ветвление, т. е. образование системы побегов. Главную функцию побега -- фотосинтез --осуществляют листья; стебли -- преимущественно несущие органы, выполняющие механическую и проводящую, а иногда и запасающую функцию.

Единство побега и взаимосвязь всех его частей превосходно проявляются в случае резких метаморфозов. Например, при образовании клубня у картофеля видоизменяется весь побег: осевая часть его разрастается в толщину, а листья редуцируются, превращаясь в «бровки»; почки (глазки) сохраняют нормальное строение и расположение.

Участки стебля между соседними узлами называют междоузлиями.

Обычно на побеге имеется несколько, иногда много узлов и междоузлий, они повторяются вдоль оси побега. Таким образом, побег имеет метамерное строение.

Почка. Почка -- это зачаточный, еще не развернувшийся побег. Она состоит из меристематической зачаточной оси, оканчивающейся в вегетативной почке конусом нарастания, и зачаточных листьев разного возраста, расположенных друг над другом на этой оси, т. е. из серии зачаточных метамеров. Помимо чисто вегетативных почек бывают и вегетативно-генеративные, в которых за ложен ряд вегетативных метамеров, а конус нарастания превращен в зачаточный цветок или соцветие (вегетативно-генеративные почки иногда называют смешанными, что неудачно). Такие почки обычны для травянистых растений (например, копытень), но бывают и у древесных (например, сирень, бузина). Чисто генеративные, или цветочные, почки заключают в себе только зачаток соцветия, без зеленых ассимилирующих листьев (например, вишня), или одиночный цветок; в последнем случае почку называют бутоном.

Довольно часто наружные листья почки представляют собой специализированные почечные чешуи, выполняющие защитную функцию и предохраняющие меристематические части почки от высыхания. Иногда пишут, что чешуи защищают внутренние части почки и от холода, но это неверно: в почке нет того внутреннего запаса тепла, который могли бы сохранить многослойные покровы.

Морфология листа

Первые листовые органы растения -- семядоли - формируются в результате дифференциации меристематического тела предзародыша, еще до возникновения апекса и верхушечной почки главного побега. Все последующие листья возникают в виде экзогенных меристематических бугорков или валиков на апексе побега, сначала главного, а по мере их заложения и каждого из боковых.

Будучи по происхождению боковыми органами, листья, как правило, имеют более или менее плоскую формуй дорсовентральное строение, в отличие от более или менее цилиндрических и радиально-симметричных осевых органов -- стебля и корня. У семенных растений листья имеют ограниченный рост, в отличие от осевых органов, способных длительное время сохранять меристематическую верхушку.

Лист, как правило, не производит на себе никаких других органов. Редко на листе могут образоваться придаточные почки и придаточные корни (бегонии, бриофиллюм, некоторые росянки), но непосредственно на листе новый лист обычно не образуется (исключения крайне редки, например, у некоторых геснериевых). Сам же лист всегда сидит только на оси побега -- стебле.

Дорсовентральность листа заключается в том, что у него, как правило, верхняя и нижняя стороны достаточно резко различаются по анатомическому строению, по характеру жилок (они на нижней стороне выпуклые), по опушению, даже по окраске (нижняя сторона часто бывает более бледно-зеленой и тусклой, чем верхняя, а иногда окрашена в красный или фиолетовый цвет антоцианом). Ограниченность роста листа связана прежде всего с тем, что у семенных растений он очень скоро теряет способность к верхушечному нарастанию и не сохраняет собственного меристематического апекса. Кроме того, рост листа, идущий обычно за счет краевой и плоскостной вставочных меристем, ограничен во времени. Достигнув определенных размеров, лист затем до конца жизни остается без изменений.

Морфологическое расчленение листа. Основная часть типичного взрослого зеленого листа -- его пластинка, к которой и относятся приведенные выше отличительные характеристики листа -- плоская форма, дорсовентральность, ограниченный рост и т. д. Нижнюю часть листа, сочлененную со стеблем и иногда нерезко от него отграниченную, называют основанием листа (или листовым подножием). Довольно часто между основанием и пластинкой формируется стеблеподобныи цилиндрический или полукруглый в сечении черешок листа. Он может быть относительно очень длинным (например, у осины) или очень коротким (как у ивы). В этих случаях листья называют черешковыми, в отличие от сидячих, где черешка нет и пластинка переходит непосредственно в основание (как у злаков).

Роль черешка, кроме опорной и проводящей, состоит в том, что он долго сохраняет способность к вставочному росту и может регулировать положение пластинки, изгибаясь по направлению к свету, о чем уже говорилось в разделе о листорасположении.

Главная часть ассимилирующего листа -- его пластинка. Если у листа одна пластинка, его называют простым. Но бывают случаи, когда на одном черешке с общим основанием (влагалищем, прилистниками) располагаются две, три или несколько обособленных пластинок, иногда даже с собственными черешочками. Такие листья называют сложными, а отдельные их пластинки носят название листочков сложного листа. Форма пластинок простых листьев и листочков сложных листьев во взрослом состоянии очень разнообразна. По форме листьев можно различать разные роды и виды растений в природе.

Стебель представляет собой ось побега, слагающуюся из узлов и междоузлий и растущую за счет как верхушечного, так и вставочного роста. В зависимости от степени вытягивания междоузлий стебли могут быть укороченными и удлиненными. Первые могут фактически состоять из одних лишь узлов.

Стебель обычно имеет более или менее цилиндрическую форму и радиальную симметрию в расположении тканей. Однако нередко в поперечном сечении он может быть угловатым -- трех-, четырех- или многогранным, иногда же совершенно плоским, сплюснутым (крылатым).

Основные функции стебля -- опорная (несущая) и проводящая. Стебель осуществляет связь между корнями и листьями. Кроме того, в многолетних стеблях обычно в том или ином количестве откладываются запасные питательные вещества. Молодые стебли, имеющие под эпидермой хлоренхиму, активно участвуют в фотосинтезе.

Стебли древесных и травянистых растений резко различаются по длительности жизни. Надземные побеги трав сезонного климата живут, как правило, один год, реже 2--3 года (если они лежачие); продолжительность жизни побегов определяется продолжительностью жизни стебля (листья могут сменяться). У древесных растений стебель существует много лет. Главный стебель дерева называют стволом, у кустарников отдельные крупные стебли именуют стволиками.

Строение и развитие цветка.

Цветки возникают из апикальных и пазушных меристем побегов и представляют собой специализированные репродуктивные органы, функционирующие и как спороносные, и как половые. В цветке протекает и спорогенез, и гаметогенез, и половой процесс.

Цветок имеет ось, или цветоложе, которая несет листочки околоцветника, тычинки и пестики; последние состоят из одного или нескольких плодолистиков (карпелл). Основные части пестика -- замкнутая завязь, внутри которой находятся семязачатки, и рыльце, воспринимающее пыльцу. Принципиальное отличие цветка от стробила голосеменных как раз и состоит в том, что семязачатки заключены внутри завязи и пыльца попадает при опылении на рыльце, а не непосредственно на семязачаток.

После опыления и оплодотворения цветки превращаются в плоды, а семязачатки в семена. Плод не может возникнуть независимо от цветка, а всегда образуется из него.

Цветоложе чаще бывает плоское, реже выпуклое (лютик, малина, магнолия, мышехвостник) или несколько вогнутое.

Цветок бывает верхушечным или выходит из пазухи кроющего листа (прицветника), большей частью отличающегося по форме от вегетативных листьев. Междоузлие под цветком называют цветоножкой. Цветки, не имеющие цветоножки, являются сидячими. На цветоножке располагаются также два (у двудольных) или один (у однодольных) маленьких листочка, которые называют предлистьями или прицветничками. Предлистья располагаются в плоскости, перпендикулярной кроющему листу. Часто предлистья вообще отсутствуют. У некоторых растений абортированы кроющие листья (эбрактеозные соцветия).

Плоды.

Плод -- характернейший орган покрытосеменных растений. Он образуется в результате тех изменений, которые происходят в цветке после оплодотворения. Иногда определяют плод как зрелый цветок. Существеннейшую часть плода составляет гинецей, однако у очень многих растений, главным образом обладающих нижней завязью, в образовании плодов принимают участие и другие части цветка, прежде всего цветоложе и цветоножка, а иногда и части соцветия. Подобные плоды иногда называют ложными, что неудачно. Плод в основном сохраняет признаки тех частей цветка, из которых он возникает, однако первоначальные структуры часто подвергаются глубоким изменениям. Поэтому в строении плода наряду с признаками гинецея и других частей цветка выступают признаки самого плода, отличающие плод от соответствующих частей цветка весьма значительно. Лишь в простейших случаях (лютиковые, бобовые) зрелые плоды отличаются от гинецея только размерами, зачастую они принимают столь своеобразные черты, что трудно установить, из какого гинецея они возникли.

Разнообразие плодов определяется тремя группами признаков:

1) строением околоплодника;

2) способом вскрывания или распадения;

3) особенностями, связанными с распространением.

Околоплодник. Околоплодник представляет собой разросшуюся и часто сильно видоизмененную стенку завязи, вместе с другими органами цветка вошедшую в состав плода. В околоплоднике различают наружный слой -- экзокарпий и внутренний -- эндокаряий, а иногда еще средний слой -- мезокарпий. Далеко не всегда зоны эти легко разграничить. Наиболее четко все три зоны можно различить в плодах типа костянки -- тонкий кожистый экзокарпий, мясистый мезокарпий и твердый эндокарлий (некоторые ученые, однако, считают два наружных слоя за один -- экзокарпий).

В процессе созревания околоплодник претерпевает весьма существенные биохимические изменения, происходит накопление Сахаров, витаминов, различных ароматических веществ, жиров и т. п., на чем основано использование плодов человеком и животными. Околоплодник зрелых плодов, как правило, уже не содержит хлорофиллоносных слоев. Плоды становятся бурыми либо приобретают яркую окраску благодаря образованию каротиноидов, антоцианов и т. п. Ярко окрашены бывают не только сочные, но и сухие плоды, например у некоторых кленов.

Определяющим морфологическим признаком плода является тип гинецея, из которого он развивается. В связи с апокарпным, синкарпным, паракарпным и лизикарпньш типами гинецея различают плоды апокарпии, синкарпии, паракарпии и лизикарпии. В каждом из названных типов выделяют подчиненные группы, также в связи с основными направлениями эволюции гинецея. Среди апокарпиев различают полимерные, т. е. возникшие из нескольких или многих плодолистиков, многосемянные и односемянные, и мономерные многосемянные и односемянные плоды. В каждом из ценокарпных типов можно различать верхние и нижние (образовавшиеся из нижней завязи) многосемянные и односемянные варианты.

Морфологический состав растений

Бодяк огородный

косое цилиндрическое корневище

прямой, пустотелый, голый или иногда слегка паутинистый

Розеточные листья очень крупные, глубоко лировидно или перисто-надрезанные, яйцевидные или яйцевидно-продолговатые в очертании. Мягкие, доли листа, в свою очередь, яйцевидные или продолговато-ланцетные, по краю с зубчиками, заканчивающимися шиловидной ресничкой. Розеточные листья сужены в крылатый черешок, а стеблевые сидячие, охватывающие стебель, и с широкими ушками при основании. Чем выше по стеблю, тем менее рассечены листья, возле корзинок они совсем цельные

Козлобородник

длинный, прямой, почти белый

серовато-зеленые ребристые стебли. Боковые веточки, заканчивающиеся довольно крупными ярко-желтыми соцветиями - корзинками

длинные, линейные, очень узкие, вытянутые в длину, при основании расширенные, наверху внезапно суживаются и заканчиваются мягким тонким и длинным острием. Стеблевые листья сидячие, почти полностью охватывают стебель, часто с волнистым краем.

Канареечник тростниковидный

корневая система мощная, проникает в почву на глубину 2,5-3,5 м.

корень веретеновидный

стеблей несколько

листья линейно-ланцетные

Клевер полевой

Стержневой корень

Стебель стелющийся или приподнимающийся, местами опушенный или голый, ветвистый.

Листья очередные, короткочерешковые, тройчатые, состоящие из обратнояйцевидных, с клиновидным основанием на концах, тупых или мелко - выемчатых, зубчатых листовых долей.

40 до 60 см.

Стержневой корень

Стебель, начиная с середины, часто от нижней трети ветвистый.

Листья копьевидные, очередные, ланцетные, мелкозубчатые.

Ястребинка зонтичная

Стержневой корень

Стебли одиночные или немногочисленные, прямые, шершавые, равномерно и густо олиственные. Прикорневая розетка листьев и стелющиеся побеги отсутствуют

Листья ланцетные или линейные, цельнокрайние или, чаще, неравномерно зубчатые, сверху - темно-зеленые, снизу - бледнее, нередко с завороченным краем.

Дрок красильный

30-60 (100-200)см.

Стебель прямостоячий или лежачий, у основания разветвленный, редко простой, одревеснелый, без колючек.

Листья простые, эллипсовидные или эллиптически-ланцетовидной формы, цельнокрайние, голые или опушенные.

Одуванчик лекарственный

относительно толстым, обычно вертикальным, почти неветвистым корнем; корневая шейка шерстистая, реже голая.

Цветочные стрелки под корзинками с паутинным войлочком; обертки длиной 13 -- 20 мм, зеленые;

Листья длиной 10-- 25 см и шириной 1,5 -- 5 см, струговидно-перистораздельные или перистолопастные с отклоненными вниз, часто зубчатыми по краю боковыми долями и более крупной конечной долей, реже цельные, по краю выемчато-зубчатые, рассеянно-волосистые или голые.

Полынь горькая

Корневище короткое со стержневым, ветвистым корнем и придаточными почками, расположенными на прикорневой шейке.

Стебли прямые, слабо ребристые, в верхней части ветвистые, в основании нередко образующие укороченные бесплодные побеги

Листья и стебли серовато-серебристые, густо покрытые короткими волосками.

Средние стеблевые листья короткочерешковые, дважды-перисто-рассеченные, верхние трехнадрезанные или цельные. Дольки всех листьев линейно-продолговатые, тупозаостренные, длиной от 3 -- 5 до 15 -- 20 мм. шириной 1 --4 мм.

Донник лекарственный

0,5--1 (2,5) м.

Стержневой разветвленный корень

Прямой стебель

Листья очередные, черешковые, тройчатые; верхний листочек на более длинном черешке, два боковых -- почти сидячие. Листочки нижних листьев продолговато-обратнояйцевидные, листочки верхних листьев более узкие, продолговатые; те и другие с 10--13 неравными зубчиками, снизу коротко опушенные. Цветочные кисти пазушные, длиной 4--10 см, густые с 30 --70 поникающими цветками, длиной 5 -- 7 мм, на цветоножках длиной до 1,5 мм.

Ромашка душистая

Корень утолщенный с многочисленными ответвлениями

Стебель один или несколько, прямой, высотой 5-35см, ветвистый, голый или опушенный.

Листья продолговатые длиной -30-60мм, шириной-5-20 мм, дважды перисторассеченные на линейные, остроконечные сегменты, в основании немного расширенные, стеблеобъемлющие, голые

Мать -и- мачеха

Корневище длинное, ползучее

покрыты чешуевидными, прижатыми, яйцевидно - ланцетными, часто красноватыми листьями

Прикорневые листья появляются после цветения. Они длинночерешковые, округло-серцевидные, угловатые, неравнозубчатые, кожистые, вначале с обеих -жом, затем сверху голые, снизу с белым, мягким войлочным опушением

Пижма обыкновенная

длинное деревянистое корневище, усаженное тонкими, мочковидными корнями.

Стебли прямые, многочисленные, слегка опушенные или голые.

Листья продолговато-яйцевидные, длиной до 20 см и шириной 3--10 см, дважды перистые и сторассеченные, самые нижние черешковые, остальные сидячие, жесткие. Доли листа ланцетовидные, рассеченные в свою очередь на яйцевидно-ланцетовидные и ланцетовидные дольки. Дольки остро-зубчатые, реже почти цельнокрайние, длиной 3--10 мм и шириной 1--5 мм. Примерно такие же дольки развиты на общем черешке листа, между первичными долями.

Щавель конский

Корень утолщенный

прямостоячий, бороздчатый, в верхней части ветвистый стебель

Листья очередные, нижние--продолговато-треугольно-яйцевидные, тупые, длиной 15--25 см, шириной 6--12 см, в основании глубоко сердцевидные, по краям слегка волнистые, на желобчатых сверху черешках. Верхние листья более мелкие. Основание черешков с раструбами.

2 . Влияние загрязнителей на морфологические свойства растений

Растения в мегаполисе испытывают стресс, т.к. человек меняет среду их обитания, приспосабливая её к своим потребностям, и, часто, делая невозможным их существование. Современный город является искусственно созданной средой, где меняется всё окружение растительного организма - климат, воздух, вода, почва.

Подавленное состояние, исчезновение или, наоборот, усиленное размножение могут сигнализировать о степени загрязнения среды и составе загрязнителя. Оценка состояния собственно растений без анализа всего спектра факторов малопродуктивна. Анализ взаимодействия растительного организма и химического вещества основан на понимании единства геохимической среды и особенностей живых организмов.

Растения, существуя в окружающей среде, взаимодействуют с ней (воздух, вода, почва), противостоят или используют изменения, происходящие в ней, себе на пользу. Подобные отношения сложились в течение многих лет, поэтому растение обладает богатым арсеналом технологий, с помощью которых потребляет, перерабатывает и избавляется от продуктов выделения.

Химические вещества, необходимые для его жизнеобеспечения, растение получает из почвы, воздуха и воды; часто растения сопутствуют определённым полезным ископаемым. Любые изменения (климатические, географические и др.) сопровождаются изменениями биоразнообразия; анатомического, морфологического, цитологического строения, физиологии растения. Мощным фактором влияния на растение является человек (антропогенный фактор). Одна из сторон антропогенного воздействия заключается в том, что человек доставляет растению необходимые вещества.

Каждой такой ситуации соответствует перечень изменений морфологических признаков, которыми растения отвечают на воздействия окружающей среды. Анализ экспериментальных данных показывает, что набор этот достаточно ограничен. Так, например, появлением пятнистости на листьях растение может отвечать на самые разные воздействия - химические отравления, грибные болезни, недостаток микроэлементов, повышенную или пониженную влажность воздуха. Выделяя индикаторные морфологические признаки, желательно исключить, по возможности, реакцию растения на другие воздействия.

В этих целях составлена коллекция с целью выявления признаков, легче всего поддающихся изменениям (узел кущения, численность, наличие или отсутствие разновозрастности и др.); выделения тех признаков, которые могут дать ответ о наличии и концентрации химического реагента. Такой блочный, подобный системам мониторингов подход, позволяет классифицировать множество изменений морфологических признаков, выделить их кластеры, связанные с определённым воздействием и возможные связи и переходы между различными состояниями.

Коллекции индикаторных морфологических признаков легли в основу создаваемой базы данных по фитоиндикации химических элементов в окружающей среде. Полученные данные об изменениях в разнообразии растений систематизированы в виде блоков, представляющих собой состояния растительных организмов, сопровождающиеся множественными изменениями морфологических признаков. Это позволяет выделить наиболее динамичные изменения множественного характера; единичные изменения в ответ на конкретное воздействие; совокупность изменений в ответ на конкретное воздействие; определить условия, при которых возможен индикаторный ответ одного или совокупности морфологических признаков на конкретное химическое воздействие.

Анализ результатов проведенной работы привел к следующим выводам о влиянии окружающей среды на исследуемые виды растений.

- Ответная реакция растительности на загрязнение проявляется в изменении скорости роста растений и накопления биомассы, в изменении параметров морфологического строения. Атмосферные загрязнения, воздействуя на целые растения и отдельные их части, вызывают в них различные процессы, отрицательно сказывающиеся на состоянии всего биоценоза.

- Лиственные породы более устойчивы к загрязнению окружающей среды, но техногенные поражения характерны и для них, особенно в зонах влияния выбросов автотранспорта и промышленных предприятий.

- Под влиянием техногенных факторов в зеленой массе растений уменьшается содержание хлорофилла. Ткани растений изменяют цвет на желтый, охристый, растение часто поражает хлороз.

- На основании сравнения параметров листовых пластин деревьев разных видов пришли к выводу, что больше всего загрязнение среды сказывается на клене остролистном, т.е. это растение менее всего устойчиво к влиянию неблагоприятных антропогенных факторов среды.

-Липа и береза более устойчивы к антропогенному влиянию, и поэтому могут быть рекомендованы для озеленения в черте города и на пришкольном участке.

Одним из наиболее информативных показателей роста растений является их высота. Различные загрязнители губительно действует на проросшие растения. В начале вегетации рост растений в высоту отставал от контроля, при различных дозах высота растений была в 2 и более раз ниже, чем в контроле.

3. Индекс биоразнообразия

Биоразнообразие в последнее десятилетие становится одним из самых распространенных понятий в научной литературе, природоохранном движении и международных связях. Научные исследования доказали, что необходимым условием нормального функционирования экосистем и биосферы в целом является достаточный уровень природного разнообразия на нашей планете.

В настоящее время биологическое разнообразие рассматривается как основной параметр, характеризующий состояние надорганизменных систем. В ряде стран именно характеристика биологического разнообразия выступает в качестве основы экологической политики государства, стремящегося сохранить свои биологические ресурсы, чтобы обеспечить устойчивое экономическое развитие.

В настоящее время предложено более 40 индексов, которые предназначены для оценки биоразнообразия. Индексы, применяемые в анализе разнообразия сообществ, должны удовлетворять следующим требованиям:

1) разнообразие сообщества тем выше, чем больше в нем количество видов;

2) разнообразие сообщества тем выше, чем выше его выравненность.

Большинство различий между индексами, измеряющими биоразнообразие, заключается в том, какое значение они придают выравненности и видовому богатству.

Важной мерой оценки разнообразия для ограниченного в пространстве и во времени сообщества, для которого точно известно число составляющих его видов и особей, является видовое богатство. Однако в большинстве случаев исследователь имеет дело с выборкой, не располагая полным списком видов сообщества. В этом случае необходимо использовать «нумерическое видовое богатство», т. е. число видов на строго оговоренное число особей или на определенную биомассу, и видовую плотность.

Видовая плотность (например, на 1 кв.м) - наиболее распространенный показатель видового богатства, особенно среди ботаников и почвенных зоологов. Показатель «нумерическое видовое богатство» используется реже, хотя более популярно его применение при исследовании водных объектов. Например, при исследовании экологических воздействий на сообщества рыб можно использовать показатель число видов на 1000 рыб.

Не всегда можно добиться равного размера всех выборок. Но следует всегда помнить, что при увеличении объема выборки число видов всегда растет.

Индекс Шеннона - Уивера. Макартур и Маргалеф впервые применили для оценки к исследованию видовой устойчивости и разнообразия сообщества теорию информации. Теория информации основывается на изучении вероятности наступления цепи событий. Результат выражается в единицах неопределенности, или информации. Шеннон в 1949 году вывел функцию, которая стала называться индексом разнообразия Шеннона. Расчеты индекса разнообразия Шеннона предполагают, что особи попадают в выборку случайно из «неопределенно большой» (т. е. практически бесконечной совокупности) генеральной совокупности, причем в выборке представлены все виды генеральной совокупности. Неопределенность будет максимальной, когда все события (N) будут иметь одинаковую вероятность наступления (pi = ni/N). Она уменьшается по мере того, как частота некоторых событий возрастает по сравнению с другими, вплоть до достижения минимального значения (нуля), когда остается одно событие и есть уверенность в его наступлении.

Индекс Шеннона рассчитывается по формуле:

H"= - pi ln pi,

где величина pi - доля особей i-го вида.

В выборке истинное значение pi неизвестно, но оценивается как ni/N.

Причины ошибок в оценке разнообразия с использованием этого индекса заключаются в том, что невозможно включить в выборку все виды реального сообщества.

При расчете индекса Шеннона часто используется двоичный логарифм, но приемлемо также использовать и другие основания логарифма (десятичный, натуральный)

Индекс Шеннона обычно варьирует в пределах от 1,5 до 3,5, очень редко превышая 4,5.

Дисперсию индекса Шеннона (VarH") рассчитывают по формуле:

Если значения индекса Шеннона рассчитать для нескольких выборок, то полученное распределение величин подчиняется нормальному закону. Это свойство дает возможность применять мощную параметрическую статистику, включая дисперсионный анализ. Применение сравнительных параметрического и дисперсионного анализа полезно при оценке разнообразия различных местообитаний, когда есть повторности.

Для проверки значимости различий между выборочными совокупностями значений индекса Шеннона Хатчесон предложил использовать параметрический критерий Стьюдента:

Число степеней свободы определяется по уравнению:

где N1 и N2 - общее число видов в двух выборках.

На основе индекса Шеннона можно вычислить показатель выравненности Е (отношение наблюдаемого разнообразия к максимальному):

E €, причем E = 1 при равном обилии всех видов.

Индекс Шеннона оказался самым популярным в оценке данных по разнообразию и применяется чаще других.

Список использованной литературы

1. Елсаков В.В. Эколого-географическая изменчивость в условиях севера // Автореферат... канд. биол. наук. Сыктывкар, 1999. - 22 с.

2. Зайцев Г.Н. Математика в экспериментальной ботанике. М.: Наука, 1990. -294 с.

3. Ушаков С.А., Ушакова И.С. Экологические проблемы и пути их решения. Сб. «Жизнь Земли. Экологические проблемы и природообразование.», 1991.

4. Экология и проблемы большого города. М., 1992.

5. Государственный комитет СССР по охране природы. М.: Лесная промышленность, 1990г.

6. Г.П.Зарубин, Ю.В. Новиков «Гигиена города». М.: Медицина, 1986г.

7. Н.С.Победоносов «Природные ресурсы земли и охрана окружающей среды». М.: Недра, 1986г.

8. Журнал «Природа»,№6. М.: Наука, 1997г.

9. Большая Советская Энциклопедия. М.: Советская энциклопедия, 1975 г.

10. Етеревская Л.В., Яранцева Л.Д. О влиянии на растения загрязнений почвы при бурении и разведке на нефть и газ // Растения и промышленная среда. Киев: Наукова думка, 1976. С. 73-75.

11. Федоров В.Д., Левич А.П. Откуда берутся индексы разнообразия? // Человек и биосфера. М.:НМГУ 1980. С. 164-184.

12. Юрцев Б.А. Эколого-географическая структура биологического разнообразия и стратегия его учета и охраны // Биологическое разнообразие: подходы к изучению и сохранению. СПб.: ЗИН РАН, 1992. С. 7-21.

Размещено на Allbest.ru

...

Подобные документы

    Морфологические особенности двудольных растений. Двудольные как группа цветковых растений. Строение семян цветковых растений. Вегетативные и репродуктивные органы. Значение в хозяйственной деятельности человека. Эфиромасличные и декоративные растения.

    презентация , добавлен 19.01.2012

    Фитоморфология как наука. Стебель и побег, их роль для растений. Классификация и значение выделительных тканей цветков. Сущность эмбриогенеза растений. Основные типы ветвлений. Виды млечников и устройство смоляных ходов. Форма и строение нектарников.

    лекция , добавлен 02.06.2009

    Строение корня и стебля. Надземная и подземная корневая системы. Листовые (вегетативные) и цветочные (генеративные) почки. Распространение плодов и семян. Простые и сложные соцветия. Органы растений и листорасположение. Виды жилкования и функции листьв.

    презентация , добавлен 20.03.2011

    Исследование основных жизненных форм растений. Описание тела низших растений. Характеристика функций вегетативных и генеративных органов. Группы растительных тканей. Морфология и физиология корня. Видоизменения листа. Строение почек. Ветвление побегов.

    презентация , добавлен 18.11.2014

    Изучение методов и задач морфологии растений - отрасли ботаники и науки о формах растений, с точки зрения которой, растение состоит не из органов, а из членов, сохраняющих главные черты своей формы и строения. Функции корня, стеблей, листьев и цветков.

    реферат , добавлен 04.06.2010

    Морфология растений: их жизненные формы; органы. Характеристика основных групп растительных тканей. Сроение образовательных тканей, латеральных меристем. Основные виды проводящих тканей флоэмы, ксилемы. Виды покровных, основных, выделительных тканей.

    презентация , добавлен 15.04.2011

    Характеристика основных групп растений по отношению к воде. Анатомо-морфологические приспособления растений к водному режиму. Физиологические адаптации растений, приуроченных к местообитаниям разной увлажненности.

    курсовая работа , добавлен 01.03.2002

    Исследование однодольных растений как второго по величине класса покрытосеменных или цветковых. Хозяйственное значение и характерные признаки ароидных, осоковых и пальмовых семейств. Изучение размножения, цветения, развития корней и листьев растений.

    реферат , добавлен 17.12.2014

    Определение понятий "засуха" и "засухоустойчивость". Рассмотрение реакции растений на засуху. Изучение типов растений по отношению к водному режиму: ксерофитов, гигрофитов и мезофитов. Описание механизма приспособления растений к условиям внешней среды.

    реферат , добавлен 07.05.2015

    Опыление как способ размножения покрытосеменных растений. Автогамия обоеполых цветков. Формы и способы осуществления аллогамии. Морфологические адаптации цветковых растений к перекрестному опылению: ветром, водой, птицами, насекомыми и летучими мышами.

Морфологическое (от греческого morphe - форма, logos - учение) описание связано с изучением строения, формы объекта и его удобно начать с элементного состава, затем связей, потом структуры и наконец - композиционных свойств.

Элементы . Напомним, что под элементом в данном случае понимается часть системы, внутрь которой описание не проникает. Элементный состав может быть гомогенным (содержать одинаковые элементы), гетерогенным (содержать различные элементы) и смешанным. Однотипность не означает полной идентичности и определяет только близость основных свойств.

По назначению (свойствам) различают информационные, энергетические и вещественные элементы.

Информационные элементы предназначены для приёма, запоминания и преобразования информации. Это преобразование может состоять в изменении вида энергии, который несёт информацию (электромагнитная энергия световых лучей, несущая изображение - в электрическую энергию при помощи кинескопа, глаза...), в изменении способа кодирования информации (музыкальный "код" - в "код" электрических импульсов), в сжатии информации (отбор признаков)

и, наконец, принятие решений (распознавание, выбор поведения).

Преобразования информации могут быть обратимыми и необратимыми. Преобразования обратимые, если они не связаны с потерей (созданием) информации. Накопление (запоминание) информации является обратимым преобразованием в том случае, если не происходит потеря информации в течении времени хранения. Принятие решения связано с потерей информации. Эффективность выполнения информационной функции определяется вносимыми искажениями и потерями информации, которые отрицательно влияют на работу других элементов и объекта в целом.

Функции энергетических элементов связаны с преобразованием энергии; задача преобразования - выработать необходимую объекту энергию в той форме, в которой она может потребляться другими элементами. Основной характеристикой здесь является коэффициент полезного действия. Поток входной энергии может поступать извне (из среды) либо от других элементов. Выходной энергетический поток направлен в другие элементы, либо в среду. Процесс преобразования энергии нуждается в информации, которая может быть сосредоточена в энергетическом элементе, не требуя обновления; но

может обновляться, пополняться или изменяться за счёт поступления информационных сигналов от других элементов системы. Носителем информации может быть как преобразуемый, так и сторонний энергетический поток.

Элементы, преобразующие вещество (механически, химически, физически, биологически и т.д.), также нуждаются в энергии и информации.


Связи . Под связями понимаются подсистемы (элементы), осуществляющие непосредственное взаимодействие между другими подсистемами (элементами), но в которых не осуществляется принятие решений. Морфологические свойства системы существенно зависят от назначения связей, которые могут быть информационными, энергетическими и вещественными, и их характера: прямые, обратные и нейтральные.

Прямые связи предназначены для передачи вещества, энергии, информации или их комбинации от одного элемента к другому. Качество связи определяется её пропускной способностью. Прямые связи обычно подразделяют на

Усиливающие (ослабляющие):

V вых =KV вх,

где V вх, V вых - передаваемые по связям компоненты (информация, энергия, вещество), K - коэффициент связи (K>1 - усиление, K<1 - ослабление);

Ограничивающие:

2 V вх: V *вх,Vвх,V * вх, V вых = * V *вх, V вх

2 V * вх: V вх >V * вх,

Запаздывающие:

V вых (t)=V вх (t-t),

где t - время запаздывания;

Преобразующие:

V вых =Ф(V вхj) j=1,n ,

где Ф - оператор преобразования и др.

Обратные связи в основном используются для выполнения функции управления процессами. Наиболее распространены информационные обратные связи. Обратная связь предполагает некоторое преобразование компонента, поступающего по прямой связи, и передачу результата преобразования обратно, то есть в направлении, противоположном функциональной последовательности (и прямой связи) к одному из предыдущих элементов системы. Принципиальная схема обратной связи показана на рис. 3.5, где выделены пути исходного процесса, основного действующего фактора х и фактора обратной связи.

Существует широкий диапазон возможностей варьирования свойств обратной связи. В соответствии с рис. 3.5 запишем:

где J - оператор обратной связи.

Все переменные являются в общем виде функциями времени, поэтому

Обратные связи в зависимости от операторов Ф и J можно сделать положительными или отрицательными; гладкими или пороговыми; двусторонними, реагирующими на увеличение или реагирующими на уменьшение; первого порядка, второго, ...старшего порядков; мгновенные, запаздывающие или опережающие.

Положительная обратная связь усиливает исходный процесс (отрицательная - ослабляет).

Примеры некоторых обратных связей:

Линейная обратная связь

Линейная пороговая обратная связь

2 ay, y 1 ,y,y 2 ,

J(y)= * ay 1 , y

2 ay 2 , y>y 2 .

В обоих приведённых случаях при a>0 имеем положительную обратную связь, а при a<0 - отрицательную.

Неубывающая обратная связь

2 ay 2 , y 1 ,y,y 2,

J(y)= * ay1 2 , y

2 ay2 2 , y>y2.

Убывающая обратная связь

Если прямая и обратная связи линейные, то есть y=Ф(х,)=K пр (x+ то

dx 1-KпрKобр

где K обр =a

Последнее выражение обычно называют коэффициентом передачи линейной системы с обратной связью.

Положительная обратная связь может играть как организующую, так дезорганизующую роль в зависимости от того, какие процессы она усиливает. Появление положительной обратной связи между случайными процессами создаёт ситуацию, при которой часть процессов будет стимулироваться, а в результате может возникнуть эффективная организация.

Отрицательная обратная связь является регулирующим фактором. Она тормозит исходный (прямой) процесс, не даёт ему чрезмерно возрасти, но ослабляет своё действие, как только основной процесс спадает. В результате основной процесс поддерживается в каких-то пределах.

Другие наиболее интересные обратные связи:

Запаздывающие

Реагирующие на производную

Jy(t)=T y(t) / t,

Oдносторонняя (пороговая) обратная связь

2 ay(e) при y(t) / t>0, Jy(e)= *

2 0 при y(t) / t<0

Динамика действия запаздывающих обратных связей разнообразна и может приводить к неожиданным последствиям. В частности, они могут вызвать периодические процессы или оказать тормозящее действие, что зависит от характера элемента с прямой связью, который охватывается данной обратной связью. В отличие от запаздывающей смысл опережающей обратной связи состоит в прогностическом влиянии (например, контроль и планирование производственных

процессов). Роль опережающей отрицательной связи может быть как

негативной (например, бюрократизм, рутина, консерватизм как препятствие желаемым изменениям), так и позитивной (например, тот же консерватизм при необоснованных структурных изменениях).

В схемах, где обратная связь действует по производной от выходного процесса (y), пока изменения y медленные обратная связь

оказывает слабое влияние, а при больших изменениях включается

обратная связь и оказывает тормозящее или стимулирующее влияние.

До сих пор предполагалось, что обратные связи действуют непрерывно и без изменений. Но могут быть обратные связи, структура и параметры которых зависят и от времени и от воздействия, причём детерминизированно, случайно, адаптивно. В этом случае выделяются стабильные и нестабильные обратные связи.

Таким образом, обратные связи являются одним из основных конструктивных устройств, при помощи которых формируются системные свойства.

Каждая отдельно взятая обратная связь образует S 1 систему. Путём объединения в единую систему несколько обратных связей можно сформировать следующие функции:

1) усиление (ослабление) процессов,

2) стабилизацию процессов,

3) задержку процесса на постоянное (или зависящее от каких-то характеристик процесса) время,

4) запоминание процесса,

5) воспроизведение и многократное повторение процесса,

6) преобразование процесса,

7) анализ-выделение подпроцессов,

8) синтез-объединение подпроцессов,

9) сравнение процессов и запоминание различающихся подпроцессов,

10) распознавание процессов,

11) предсказание и формирование процессов.

На основе комбинации перечисленных функций можно построить S 0 -систему, способную формировать и принимать решения.

Нейтральные связи не связаны с функциональной деятельностью системы, непредсказуемы или случайны. Вместе с тем нейтральные связи могут сыграть определённую роль при адаптации, служить исходным ресурсом для формирования прямых и обратных связей.

Структура . Обычно под структурой (s) понимается множество всех возможных отношений между подсистемами и элементами внутри системы.

Формирование структуры предполагает декомпозицию системы, расчленение её на подсистемы. Членение можно производить по различным признакам. Замена одной или несколько подсистем (элементов) структуры другими подсистемами (элементами) не изменяет отношения между заменёнными подсистемами (элементами) и остальными подсистемами системы. Следовательно, основным фактором формирования структуры является задание структурных отношений. По характеру отношений между элементами структуры делятся на многосвязные, иерархические и смешанные.

Отношения могут быть детерминизированными, вероятностными, а также хаотическими. Свойства структур соответственно детерминизированных, вероятностных, хаотичных, а также смешанных зависят от этих отношений. Детерминизм, как и индетерминизм, имеет свою иерархию совершенства. Низкий уровень - полная неизменяемость, следующий, более высокий - включение и выключение определённых элементов (при соответствующих условиях), ещё более высокие - наращивание структуры (из элементов, сформированных из внешней среды) в строго определённом направлении, создание элементов нового типа, но предусмотренных заранее, и т.д. Вероятностные структуры в качестве низшего уровня имеют случайные изменения, далее идут изменения целенаправленные, с отбором и т.д. Граница между стабильными и нестабильными структурами высокого уровня не является определённой.

Рассмотрим подробнее категорию отношения на примере двух взаимодействующих подсистем (или систем) А и Б. Отношения детерминизированно , если состояния А полностью определяет состояние Б, и наоборот. Если М А и М Б - множества возможных состояний систем А и Б, тогда

m Б =f А (m А); m А =f Б (m Б),

где m А М А; m Б М Б; f А и f Б - однозначные функции.

Если состояние А полностью определяет состояние Б, а состояние Б с отличной от 0 и 1 вероятностью определяет состояние А, отношение А,Б детерминизированно-вероятное

m Б =f А (m А), P(m А)=f Б (m Б),

где P(m А) - вероятность того, что система А будет находиться в состоянии m А М А.

Отношение вероятностное, если состояния А,Б взаимосвязаны некоторыми постоянными значениями вероятности, то есть

P(m Б)=f А (m А); P(m А)=f Б (m Б).

Отношение ограничительное , если состояние А ограничивает множество состояний Б, то есть

m Б М БА, М БА =f(m А), М БА М Б,

Ограничительное отношение может быть не только детерминированным, но и детерминированно-вероятностным и вероятностным. Соответственно:

m Б М БА, М БА =f А (m А), М БА М Б,

mА MАБ, P(MАБ)=fБ(mБ), MАБ MА и

m Б M БА, P(M БА)=f(m А), M БА M Б,

m А M АВ, P(M АБ)=f(m Б), M АВ M А.

m Б M БА (1) , M БА (1) =f А (M АБ (1)), M БА (1) M Б, M АВ (1) M А,

m А M АБ (2) , M АБ (2) =f Б (M БА (2)), M АВ (2) M А, M БА (2) M Б.

Категорическое отношение обеспечивает значительную свободу поведения каждой из подсистем. Системы, состоящие из подсистем, между которыми существуют категорические отношения, при взаимодействии со средой могут иметь широкий диапазон возможных поведений.

Подсистемы, выходные компоненты которых однозначно зависят от любых выходных компонент предшествующих подсистем, называются подчиненными, а предшествующие подсистемы - управляющими.

Наибольшее практическое и теоретическое значения имеют три класса структур: иерархические, неиерархические и смешанные. Для иерархических структур (см. рис. 3.6) характерно наличие управляющих (командных) подсистем и они удовлетворяют следующим условиям:

1) каждая подсистем является либо управляющей, либо подчиненной, либо (по отношению к различным подсистемам) то и другое одновременно;

2) существует по крайней мере одна подчиненная подсистема;

3) существует одна и только одна управляющая подсистема;

4) любая подчиненная подсистема непосредственно взаимодействует с одной и только одной управляющей (обратное не обязательно).

Для многоуровневых иерархических структур справедливы следующие положения:

а) подсистема более высокого уровня имеет дело с более широкими аспектами поведения системы в целом;

б) время преобразования входных компонент в выходные увеличивается с увеличением уровня управляющей подсистемы;

в) подсистемы более высоких уровней иерархической структуры имеют дело с более медленными аспектами поведения систем;

г) с повышением уровня подсистемы увеличивается удельный вес информационной составляющей преобразования и взаимодействия и ее роль в функциональной деятельности системы.

Неиерархические структуры являются производными от многосвязанной структуры (см. рис. 3.7), в которой каждая подсистема непосредственно взаимодействует с любой другой.

Неиерархические структуры удовлетворяют следующим условиям:

1) существует по крайней мере одна подсистема, которая не является ни управляющей, ни подчиненной;

2) не существует подсистемы, которая является только подчиненной;

3) не существует подсистемы, которая является только управляющей;

4) любая подчиненная подсистема непосредственно взаимодействует более чем с одной управляющей (обратное не обязательно).

Важная особенность неиерархической структуры состоит в том, что в ней нет подсистем, принимающих независимые от других подсистем решения. Она обычно обладает следующими свойствами:

а) любая подсистем может влиять на все аспекты поведения системы;

б) время преобразования входных компонент в выходные слабо зависит от положения подсистемы в структуре;

в) функции подсистем легче изменяются в процессе взаимодействия.

Рассмотрение степени влияния подсистем на другие подсистемы в неиерархической структуре приводит к важному понятию лидерства.Лидирующей называют подсистему, удовлетворяющей следующим требованиям:

1) подсистема не имеет детерминированного взаимодействия ни с одной подсистемой;

2) подсистема является управляющей (при непосредственном или посредственном взаимодействии) по отношению к части (наибольшему числу) подсистем;

3) подсистема либо не является управляемой (подчиненной), либо управляется наименьшим (по сравнению с другими подсистемами) числом подсистем.

Лидирующих подсистем может быть больше одной, при нескольких лидирующих подсистемах возможна главная лидирующая подсистема.

Неиерархические структуры без лидерства называютравновесными .

Смешанные структуры представляют собой различные комбинации иерархических и неиерархических структур.

Стабильность структуры характеризуется временем ее изменения. Структура может изменятся без преобразования класса или преобразованием одного класса в другой. В частности, возникновение лидера в неиерархической структуре может привести к преобразованию ее в иерархическую и т.д.

Для описания структур применяются графы. Важной особенностью структурного графа является число возможных путей, по которым можно пройти от одной вершины к другой. Чем больше таких путей, тем избыточнее структура и выше ее надежность. Но может существовать и бесполезная избыточность, которая в структурном графе изображается в виде петель (см. рис. 3.8). Наличие петель означает нерациональное расходование ресурсов. Обычно петли могут изыматься из структуры без всякого ущерба для функциональных свойств объекта.

Композиция (К). Композиционные свойства систем определяются способом объединения элементов в подсистемы. Различают подсистемы:эффекторные - способные преобразовывать воздействие и воздействовать веществом и энергией на другие подсистемы и системы, в том числе на среду;рецепторные - способные преобразовывать влияние воздействия в информационные сигналы, передавать и переносить информацию;рефлексивные - способные воспроизводить внутри себя процессы на информационном уровне, генерировать информацию; а такженеопределенные - свойства которых не могут быть определены. Композиция систем, не содержащих подсистем (элементов) с выраженными свойствами, называют слабой, а содержащих подсистемы, с выраженными функциями - соответственно с эффекторными, рецепторными или рефлексивными подсистемами. Возможны комбинации. Композицию системы, включающую подсистемы всех трех видов, называют полной.

В итоге морфологическое описание системы это:

где S=S i - множество элементов и их свойства, различая: состав - гомогенный, гетерогенный, смешанный, неопределенный; свойства - вещественные, энергетические, информационные, смешанные, неопределенные;

V=V i - множество связей, различая:

назначение связей - информационные, вещественные, энергетические, смешанные;

характер связей - прямые, обратные, нейтральные;

s - структура, различая:

устойчивость структуры - детерминированная, вероятностная, хаотическая;

построение структуры - иерархическая, многосвязанная, смешанная, преобразующаяся;

K - композиция, различая:

слабые, с эффекторными, с рецепторными, с рефлексивными подсистемами, полные, неопределенные.

Морфологическое описание, как и функциональное, строится по иерархическому (многоуровневому) принципу путем последовательной

декомпозиции подсистем.