Замки

Световая скорость. Что такое скорость света и как её измеряют

Человека всегда интересовала природа света, о чем свидетельствуют мифы, легенды, дошедшие до нас философские споры и научные наблюдения. Свет всегда был поводом для дискуссий древних философов, а попытки его изучения предпринимались еще во времена возникновения эвклидовой геометрии - за 300 лет до н.э. Уже тогда было известно о прямолинейности распространения света, равенстве углов падения и отражения, явлении преломления света, обсуждались причины возникновения радуги. Аристотель считал, что скорость света бесконечно велика, а значит, логически рассуждая, и света не подлежит обсуждению. Типичный случай, когда проблема своей глубиной опережает эпоху понимания ответа.

Каких-то 900 лет назад Авиценна предположил, что какой бы большой ни была скорость света она, все-таки, имеет конечную величину. Такого мнения был не только он, но никому не удавалось доказать это экспериментально. Гениальный Галилео Галилей предложил эксперимент механистического понимания проблемы: два человека, стоящие на расстоянии нескольких километров друг от друга, подают сигналы, открывая заслонку фонаря. Как только второй участник увидит свет от первого фонаря, он открывает свою заслонку и первый участник фиксирует время получения ответного светового сигнала. Затем расстояние увеличивается и все повторяется. Ожидалось зафиксировать увеличение задержки и на этой основе выполнить расчет скорости света. Эксперимент закончился ничем, потому как «все было не внезапно, но чрезвычайно быстро».

Первым измерил скорость света в вакууме в 1676 году астроном Оле Ремер - он воспользовался открытием Галилея: тот обнаружил в 1609 году четыре у которых в течение полугода разница времени между двумя затмениями спутника составляла 1320 секунд. Пользуясь астрономическими сведениями своего времени Ремер получил значение скорости света равным 222000 км в секунду. Потрясающим оказалось то, что сам метод измерения невероятно точен - применение ныне известных данных диаметра Юпитера и времени запаздывания затемнения спутника дает скорость света в вакууме, на уровне современных значений, полученных другими способами.

Поначалу к опытам Ремера была только одна претензия - необходимо было провести измерения земными средствами. Прошло почти 200 лет, и Луи Физо построил остроумную установку, в которой луч света отражался от зеркала на расстоянии более 8 км и приходил обратно. Тонкость была в том, что он проходил по дороге туда-обратно через впадины зубчатого колеса, и если скорость вращения колеса увеличивать, то настанет момент, когда свет перестанет быть виден. Остальное - дело техники. Результат измерения - 312000 км в секунду. Мы сейчас видим, что Физо был еще ближе к истине.

Следующий шаг в измерении скорости света сделал Фуко, который заменил зубчатое колесо Это позволило уменьшить габариты установки и увеличить точность измерения до 288000 км в секунду. Не меньшей важности был и проделанный Фуко эксперимент, в котором он определил скорость света в среде. Для этого между зеркалами установки была помещена труба с водой. В этом опыте было установлено уменьшение скорости света при его распространении в среде в зависимости от коэффициента преломления.

Во второй половине 19-го века наступило время Майкельсона, который посвятил 40 лет своей жизни измерениям в области света. Венцом его работы стала установка, на которой он измерил скорость света в вакууме используя вакуумированную металлическую трубу длиной более полутора километров. Другим фундаментальным достижением Майкельсона было доказательство того факта, что для любой длины волны скорость света в вакууме одинаковая и в качестве современного эталона составляет 299792458+/- 1.2 м/c. Такие измерения проводились на основании уточненных значений эталонного метра, определение которого утверждено с 1983 г. в качестве международного стандарта.

Мудрый Аристотель был неправ, но чтобы это доказать понадобилось почти 2000 лет.

Художественное представление космического корабля, совершающего прыжок к "скорости света". Предоставлено: NASA/Glenn Research Center.

С древних времен философы и ученые стремились понять свет. Кроме того, пытаясь определить его основные свойства (т.е. из чего он состоит - частица или волна и т.д.), они также стремились проделать конечные измерения того, как быстро он движется. С конца 17 века ученые делают именно это, и с возрастающей точностью.

Поступая таким образом, они получили лучшее понимание механики света, и какую важную роль он играет в физике, астрономии и космологии. Проще говоря, свет движется с невероятной скоростью, и это самый быстро движущийся объект во Вселенной. Его скорость является постоянной и неприступным барьером и используется в качестве измерения расстояния. Но насколько же быстро он движется?

Скорость света (с):

Свет движется с постоянной скоростью 1 079 252 848,8 км/ч (1,07 млрд). Что получается 299 792 458 м/с. Расставим все по своим местам. Если вы могли бы двигаться со скоростью света, вы смогли бы обогнуть земной шар примерно семь с половиной раз в секунду. Между тем, у человека, летящего со средней скоростью 800 км/ч, заняло бы более 50 часов, чтобы обогнуть планету.

Иллюстрация, показывающая расстояние, которое свет проходит между Землей и Солнцем. Предоставлено: LucasVB/Public Domain.

Рассмотрим это с астрономической точки зрения, среднее расстояние от до 384 398,25 км. Поэтому свет проходит это расстояние примерно за секунду. Между тем, среднее 149 597 886 км, что означает, что свету требуется всего около 8 минут, чтобы совершить это путешествие.

Неудивительно тогда, почему скорость света - это показатель, используемый для определения астрономических расстояний. Когда мы говорим, что звезда, такая как , находится в 4,25 световых годах, мы подразумеваем, что для того, чтобы добраться туда, потребуется, путешествуя с постоянной скоростью 1,07 млрд км/ч, около 4 лет и 3 месяцев. Но как же мы пришли к этому весьма конкретному значению скорости света?

История изучения:

До 17 века ученые были уверены в том, что свет путешествовал с конечной скоростью, или мгновенно. Со времен древних греков до средневековых исламских богословов и ученых нового времени шли дебаты. Но до тех пор, пока ни появилась работа датского астронома Оле Рёмера (1644-1710), в которой были проведены первые количественные измерения.

В 1676 году Рёмер наблюдал, что периоды самой внутренней луны Юпитера Ио казались короче, когда Земля приближалась к Юпитеру, чем когда она удалялась. Из этого он заключил, что свет движется с конечной скоростью, и по оценкам, ему требуется около 22 минут, чтобы пересечь диаметр орбиты Земли.


Профессор Альберт Эйнштейн на 11-й лекции Джозайи Уилларда Гиббса в Технологическом Институте Карнеги 28 декабря 1934 года, где он разъясняет свою теорию о том, что материя и энергия - это одно и то же в разных формах. Предоставлено: AP Photo.

Христиан Гюйгенс использовал эту оценку и объединил её с оценкой диаметра орбиты Земли, чтобы получить оценку в 220000 км/с. Исаак Ньютон также рассказывал о расчетах Рёмера в своей основополагающей работе "Оптика" 1706 года. Внося поправки для расстояния между Землей и Солнцем, он подсчитал, что свету потребуется семь или восемь минут, чтобы добраться от одного к другому. В обоих случаях была сравнительно небольшая погрешность.

Более поздние измерения, проведенные французскими физиками Ипполитом Физо (1819-1896) и Леоном Фуко (1819-1868), уточнили эти показатели, приведя к значению 315000 км/с. И ко второй половине 19 века ученым стало известно о связи между светом и электромагнетизмом.

Это было достигнуто физиками за счет измерения электромагнитных и электростатических зарядов. Затем они обнаружили, что числовое значение было очень близко к скорости света (как измерил Физо). Исходя из его собственной работы, которая показала, что электромагнитные волны распространяются в пустом пространстве, немецкий физик Вильгельм Эдуард Вебер предположил, что свет был электромагнитной волной.

Следующий большой прорыв произошёл в начале 20-го века. В своей статье под названием "К электродинамике движущихся тел" Альберт Эйнштейн утверждает, что скорость света в вакууме, измеренная наблюдателем, имеющим постоянную скорость, одинакова во всех инерциальных системах отсчета и не зависит от движения источника или наблюдателя.


Лазерный луч, светящий через стакан с водой, показывает, скольким изменениям он подвергается, когда проходит из воздуха в стекло, в воду и обратно в воздух. Предоставлено: Bob King.

Взяв это утверждение и принцип относительности Галилео за основу, Эйнштейн вывел специальную теорию относительности, в которой скорость света в вакууме (с) является фундаментальной константой. До этого соглашение среди ученых гласило, что космос был заполнен "светоносным эфиром", который отвечает за его распространение - т.е. свет, движущийся через движущуюся среду будет плестись в хвосте среды.

Это в свою очередь означает, что измеренная скорость света была бы простой суммой его скорости через среду плюс скорость той среды. Тем не менее, теория Эйнштейна сделала концепцию неподвижного эфира бесполезной и изменила представление о пространстве и времени.

Она (теория) не только продвинула идею о том, что скорость света одинакова во всех инерциальных системах, но также была высказана мысль о том, что происходят серьезные изменения, когда вещи движутся близко к скорости света. К ним относятся пространственно-временные рамки движущегося тела, кажущегося замедляющимся, и направление движения, когда измерение происходит с точки зрения наблюдателя (т.е. релятивистские замедление времени, где время замедляется при приближении к скорости света).

Его наблюдения также согласуются с уравнениями Максвелла для электричества и магнетизма с законами механики, упрощают математические расчеты, уходя от несвязанных аргументов других ученых, и согласовываются с непосредственным наблюдением скорости света.

Насколько похожи материя и энергия?

Во второй половине 20-го века всё более точные измерения с помощью метода лазерных интерферометров и резонансных полостей далее уточняли оценки скорости света. К 1972 году группа в Национальном бюро стандартов США в Боулдере, Колорадо, использовала метод лазерной интерферометрии, чтобы получить принятое в настоящее время значение 299 792 458 м/с.

Роль в современной астрофизике:

Теория Эйнштейна о том, что скорость света в вакууме не зависит от движения источника и инерциальный системы отсчета наблюдателя, с тех пор неизменно подтверждается множеством экспериментов. Она также устанавливает верхний предел скорости, с которой все безмассовые частицы и волны (включая свет) могут распространяться в вакууме.

Один из результатов этого в том, что космологии теперь рассматривают пространство и время как единую структуру, известную как пространство-время, в которой скорость света может быть использована для определения значения обоих (т.е. световые года, световые минуты и световые секунды). Измерение скорости света также может стать важным фактором при определении ускорения расширения Вселенной.

В начале 1920-х с наблюдениями Леметра и Хаббла ученым и астрономам стало известно, что Вселенная расширяется из точки происхождения. Хаббл также заметил, чем дальше галактика, тем быстрее она движется. То, что сейчас называют постоянной Хаббла - это скорость, с которой расширяется Вселенная, она равна 68 км/с на мегапарсек.

Как быстро расширяется Вселенная?

Это явление, представленное в виде теории, означает, что некоторые галактики на самом деле могут двигаться быстрее скорости света, что может наложить ограничение на то, что мы наблюдаем в нашей Вселенной. По сути, галактики, движущиеся быстрее скорости света, пересекли бы "космологический горизонт событий", где они больше не видны для нас.

Кроме того, к 1990-м измерения красного смещения далёких галактик показали, что расширение Вселенной ускоряется за последние несколько миллиардов лет. Это привело к теории "Темной Энергии", где невидимая сила движет расширением самого пространства, а не объектов, движущихся через него (при этом не поставив ограничение на скорость света или нарушение относительности).

Наряду со специальной и общей теорией относительности современное значение скорости света в вакууме сформировалось из космологии, квантовой механики и Стандартной модели физики элементарных частиц. Она остается постоянной, когда речь идет о верхнем пределе, с которым могут двигаться безмассовые частицы и остается недостижимым барьером для частиц, имеющих массу.

Вероятно, когда-нибудь мы найдем способ превысить скорость света. Пока у нас нет практических идей о том, как это может происходить, похоже "умные деньги" на технологиях позволят нам обойти законы пространства-времени, либо путем создания варп-пузырей (ака. варп-двигатель Алькубьерре) либо туннелирование через него (ака. червоточины).

Что такое червоточины?

До этого времени мы просто будем вынуждены довольствоваться Вселенной, которую мы видим, и придерживаться исследования той части, до которой можно добраться с помощью обычных методов.

Название прочитанной вами статьи "Что такое скорость света?" .

Ограничение скорости на большинстве автострад от 90 до 110 километров. Хотя в вакууме космического пространства нет дорожных указателей, но и там есть ограничение скорости - это 1080000000 километров в час.

Самая большая скорость в природе

Это самая большая скорость света в природе. Ученые обычно приводят скорость света в километрах в секунду - 300 000 километров в секунду. Свет состоит из фотонов. Именно они могут летать с такой сумасшедшей скоростью.

Своеобразные частицы – фотоны

Ученые называют фотоны частицами. Но это очень своеобразные частицы. У них нет массы покоя, то есть, в обычном смысле у них нет веса. Трудно себе представить что – то такое реальное, что было бы чистой энергией и не содержало бы ни крупицы вещества. Фотоны и есть такая реальность. сравнить предельную скорость фотонов с теми скоростями, которые мы привыкли считать большими.

Космический корабль, летящий со скоростью света, для стороннего наблюдателя не имел бы линейных размеров. Возьмем, например, ракету «Пионер», построенную для полетов за пределами Солнечной системы. Так вот, покидая пределы Солнечной системы, «Пионер» имел скорость 60 километров в секунду. Неплохо! Расстояние от Нью-Йорка до Сан-Франциско он мог бы покрыть за полторы минуты. Но в сравнении со скоростью фотона в 300 000 километров в секунду, скорость «Пионера» выглядит просто черепашьей. Или посмотрим, с какой скоростью перемещается в пространстве Солнце.

Материалы по теме:

Почему светят звезды?

Зато время, что вы читаете это предложение, Солнце, Земля и прочие восемь планет нашей Солнечной системы несутся вокруг Млечного Пути, как карусельные лошадки, со скоростью 230 километров в секунду (при этом сами-то мы совершенно не замечаем, что летим с такой невероятной скоростью). Но и эта огромная скорость очень мала по сравнению со скоростью света и составляет около одного ее процента.

Скорость света и предметы

Если разогнать обычный предмет до около световой скорости, с ним начнут происходить необыкновенные приключения. При достижении телом таких скоростей наблюдатель отметит изменение линейных размеров и массы предмета. Даже время начнет меняться. Космический корабль, летящий со скоростью 90 процентов скорости света, уменьшится в размерах приблизительно наполовину. При увеличении скорости он будет уменьшаться все сильнее и сильнее, пока при достижении скорости света он совершенно не потеряет свои линейные размеры.

(в т. ч. световых); одна из фундам. физ. постоянных; представляет собой предельную скорость распространения любых физ. воздействий (см. Относительности теория )и инвариантна при переходе от одной системы отсчёта к другой.

С. с. в среде с" зависит от показателя преломления среды n, различного для разных частот v (Дисперсия света): . Эта зависимость приводит к отличию групповой скорости от фазовой скорости света в среде, если речь идёт не о монохроматич. свете (для С. с. в вакууме эти две величины совпадают). Экспериментально определяя с" , всегда измеряют групповую С. с. либо т. н. с к о р о с т ь сигнала, или скорость передачи энергии, только в нек-рых спец. случаях не равную групповой.

Впервые С. с. определил в 1676 О. К. Рёмер (О. Ch. Roemer) по изменению промежутков времени между затмениями спутников Юпитера. В 1728 её установил Дж. Брадлей (J. Bradley), исходя из своих наблюдений аберрации света звёзд. В 1849 А. И. Л. Физо (А. Н. L. Fizeau) первым измерил С. с. по времени прохождения светом точно известного расстояния (базы); т. к. показатель преломления воздуха очень мало отличается от 1, то наземные измерения дают величину, весьма близкую к с. В опыте Физо пучок света от источника S (рис. 1), отражённый полупрозрачным зеркалом N , периодически прерывался вращающимся зубчатым диском W , проходил базу MN (ок. 8 км) н, отразившись от зеркала М , возвращался к диску. Попадая на зубец, свет не достигал наблюдателя, а попавший в промежуток между зубцами свет можно было наблюдать через окуляр Е . По известным скоростям вращения диска определялось время прохождения светом базы. Физо получил значение с = 313300 км/с В 1862 Ж. Б. Л. Фуко (J. В. L. Foucault) реализовал высказанную в 1838 идею Д. Араго (D. Arago), применив вместо зубчатого диска быстровращающееся (512 об/с) зеркало. Отражаясь от зеркала, пучок света направлялся на базу и по возвращении вновь попадал на это же зеркало, успевшее повернуться на нек-рый малый угол (рис. 2). При базе всего в 20 м Фуко нашёл, что С. с. равна 298000 500 км/с. Схемы и осн. идеи опытов Физо и Фуко были многократно использованы в последующих работах по определению С. с. Полученное А. Майкельсоном (A. Michelson) (см. Майкельсона опыт )в 1926 значение км/с было тогда самым точным и вошло в интернац. таблицы физ. величин.

Рис. 1. Определение скорости света методом Физо .

Рис. 2. Определение скорости света методом вращающегося зеркала (методом Фуко): S - источник света; R - быстровращающееся зеркало; С - неподвижное вогнутое зеркало, центр которого совпадает с осью вращения Я (поэтому свет, отражённый С, всегда попадает обратно на R); М-полупрозрачное зеркало; L - объектив; Е - окуляр; RС - точно измеренное расстояние (база). Пунктиром показаны положение R, изменившееся за время прохождения светом пути RС и обратно, и обратный ход пучка лучей через объектив L, который собирает отражённый пучок в точке S", а не вновь в точке S, как это было бы при неподвижном зеркале Л. Скорость света устанавливают, измеряя смещение SS" .

Измерения С. с. в 19 в. сыграли большую роль в , дополнительно подтвердив волновую теорию света. Выполненное Фуко в 1850 сравнение С. с. одной и той же частоты v в воздухе и воде показало, что скорость в воде в соответствии с предсказанием волновой теории. Была также установлена связь оптики с теорией электромагнетизма: измеренная С. с. совпала со скоростью эл--магн. волн, вычисленной из отношения эл--магн. и эл--статич. единиц электрич. заряда [опыты В. Вебера (W. Weber) и Ф. Кольрауша (F. Kohlrausch) в 1856 и последующие более точные измерения Дж. К. Максвелла (J. С. Maxwell)]. Это совпадение явилось одним из отправных пунктов при создании Максвеллом в 1864-73 эл--магн. теории света.

В совр. измерениях С. с. используется модернизиров. метод Физо (модуляц. метод) с заменой зубчатого колеса на эл--оптич., ., интерференционный или к--л. иной модулятор света, полностью прерывающий или ослабляющий световой пучок (см. Модуляция света ).Приёмником излучения служит фотоэлемент пли фотоэлектронный умножитель .Применение лазера в качестве источника света, УЗ-модулятора со стабилизиров. частотой и повышение точности измерения длины базы позволили снизить погрешности измерений и получить значение км/с. Помимо прямых измерений С. с. по времени прохождения известной базы, широко применяются косвенные методы, дающие большую точность. Так, с помощью микроволнового вакуумиров. [К. Фрум (К. Froome), 1958] при длине волны излучения = 4 см получено значение км/с. С ещё меньшей погрешностью определяется С. с. как частное от деления независимо найденных и v атомарных или молекулярных спектральных линий . К. Ивенсон (К. Evenson) и его сотрудники в 1972 по цезиевому стандарту частоты (см. Квантовые стандарты частоты )нашли с точностью до 11-го знака частоту излучения СН 4 -лазера, а по криптоновому стандарту частоты - его длину волны (ок. 3,39 мкм) и получили ± 0,8 м/с. Решением Генеральной ассамблеи Международного комитета по численным данным для науки и техники - КОДАТА (1973), проанализировавшей все имеющиеся данные, их достоверность и погрешность, С. с. в вакууме принято считать равной 299792458 ±1,2 м/с.

Как можно более точное измерение величины с чрезвычайно важно не только в общетеоретич. плане и для определения значении др. физ. величин, но и для практич. целей. К ним, в частности, относится определение расстояний по времени прохождения радио-или световых сигналов в радиолокации, оптической локации, светодальнометрии , в системах слежения ИСЗ и др.

Лит.: Вафиади В. Г., Попов Ю. В., Скорость света и ее значение в науке и технике, Минск, 1970; Тейлор В., Паркер В., Лангенберг Д., Фундаментальные константы и квантовая , пер. с англ., М., 1972. А. М. Бонч-Бруевич .

Еще задолго до того, как ученые измерили скорость света, им пришлось изрядно потрудиться над определением самого понятия «свет». Одним из первых над этим задумался Аристотель, который считал свет некой подвижной субстанцией, распространяющейся в пространстве. Его древнеримский коллега и последователь Лукреций Кар настаивал на атомарной структуре света.

К XVII веку сформировались две основные теории природы света – корпускулярная и волновая. К приверженцам первой относился Ньютон. По его мнению, все источники света излучают мельчайшие частицы. В процессе «полета» они образуют светящиеся линии – лучи. Его оппонент, голландский ученый Христиан Гюйгенс настаивал на том, что свет – это разновидность волнового движения.

В результате многовековых споров ученые пришли к консенсусу: обе теории имеют право на жизнь, а свет – это видимый глазу спектр электромагнитных волн.

Немного истории. Как измеряли скорость света

Большинство ученых древности были убеждены в том, что скорость света бесконечна. Однако результаты исследований Галилея и Гука допускали ее предельность, что наглядно было подтверждено в XVII веке выдающимся датским астрономом и математиком Олафом Ремером.


Свои первые измерения он произвел, наблюдая за затмениями Ио – спутника Юпитера в тот момент, когда Юпитер и Земля располагались с противоположных сторон относительно Солнца. Ремер зафиксировал, что по мере отдаления Земли от Юпитера на расстояние, равное диаметру орбиты Земли, изменялось время запаздывания. Максимальное значение составило 22 минуты. В результате расчетов он получил скорость 220000 км/сек.

Через 50 лет в 1728 году, благодаря открытию аберрации, английской астроном Дж. Брэдли «уточнил» этот показатель до 308000 км/сек. Позже скорость света измерили французские астрофизики Франсуа Арго и Леон Фуко, получив на «выходе» 298000 км/сек. Еще более точную методику измерения предложил создатель интерферометра, известный американский физик Альберт Майкельсон.

Опыт Майкельсона по определению скорости света

Опыты продолжались с 1924 по 1927 год и состояли из 5 серий наблюдений. Суть эксперимента заключалась в следующем. На горе Вильсон в окрестностях Лос-Анжелеса были установлены источник света, зеркало и вращающаяся восьмигранная призма, а через 35 км на горе Сан-Антонио – отражающее зеркало. Вначале свет через линзу и щель попадал на вращающуюся с помощью высокоскоростного ротора (со скоростью 528 об/сек.) призму.

Участники опытов могли регулировать частоту вращения таким образом, чтобы изображение источника света было четко видно в окуляре. Поскольку расстояние между вершинами и частота вращения были известны, Майкельсон определил величину скорости света – 299796 км/сек.

Окончательно со скоростью света ученые определились во второй половине XX века, когда были созданы мазеры и лазеры, отличающиеся высочайшей стабильностью частоты излучения. К началу 70-х погрешность в измерениях снизилась до 1 км/сек. В результате по рекомендации XV Генеральной конференции по мерам и весам, состоявшейся в 1975 году, было решено считать, что скоростью света в вакууме отныне равна 299792,458 км/сек.

Достижима ли для нас скорость света?

Очевидно, что освоение дальних уголков Вселенной немыслимо без космических кораблей, летящих с огромной скоростью. Желательно со скоростью света. Но возможно ли такое?

Барьер скорости света – одно из следствий теории относительности. Как известно, увеличение скорости требует увеличения энергии. Скорость света потребует практически бесконечной энергии.

Увы, но законы физики категорически против этого. При скорости космического корабля в 300000 км/сек летящие навстречу ему частицы, к примеру, атомы водорода превращаются в смертельный источник мощнейшего излучения, равного 10000 зивертов/сек. Это примерно то же самое, что оказаться внутри Большого адронного коллайдера.

По мнению ученых Университета Джона Хопкинса, пока в природе не существует адекватной защиты от столь чудовищной космической радиации. Довершит разрушение корабля эрозия от воздействия межзвездной пыли.

Еще одна проблема световой скорости – замедление времени. Старость при этом станет намного более продолжительной. Также подвергнется искривлению зрительное поле, в результате чего траектория движения корабля будет проходить как бы внутри тоннеля, в конце которого экипаж увидит сияющую вспышку. Позади корабля останется абсолютная кромешная тьма.

Так что в ближайшем будущем человечеству придется ограничить свои скоростные «аппетиты» 10 % от скорости света. Это означает, что до ближайшей к Земле звезды – Проксимы Центавра (4,22 св. лет) придется лететь примерно 40 лет.